Suppr超能文献

利用磁化传递增强颈椎梯度回波磁共振图像的对比度。

Use of magnetization transfer for improved contrast on gradient-echo MR images of the cervical spine.

作者信息

Finelli D A, Hurst G C, Karaman B A, Simon J E, Duerk J L, Bellon E M

机构信息

Department of Radiology, Metro-Health Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44109-1998.

出版信息

Radiology. 1994 Oct;193(1):165-71. doi: 10.1148/radiology.193.1.8090886.

Abstract

PURPOSE

To evaluate whether magnetization transfer (MT) can improve image contrast on gradient-recalled echo (GRE) magnetic resonance (MR) images of the cervical spine.

MATERIALS AND METHODS

Sagittal and axial two-dimensional conventional GRE and MT GRE images were obtained in 103 patients with degenerative disk disease or intrinsic cord lesions. The contrast-to-noise ratios (C/Ns) for the cervical spinal cord and cerebrospinal fluid (CSF) were compared for images obtained at various MT power level and section-select flip angle combinations. Axial three-dimensional GRE images were also obtained with application of MT and C/N evaluated in 10 additional patients.

RESULTS

Tailored two-dimensional MT GRE images, obtained with a moderate MT power level and a section-select flip angle similar to the Ernst angle for CSF, provided an average of 2.2-2.4-fold improvement in spinal cord-CSF C/N than conventional GRE images (P < .001).

CONCLUSION

The MT GRE images demonstrated superior delineation of disk herniations, foraminal stenosis, and intrinsic cord lesions over conventional GRE and T2-weighted spin-echo images in clinical cervical spine examinations.

摘要

目的

评估磁化传递(MT)是否能改善颈椎梯度回波(GRE)磁共振(MR)图像的图像对比度。

材料与方法

对103例患有椎间盘退变疾病或脊髓内病变的患者获取矢状面和轴面二维常规GRE图像及MT GRE图像。比较在不同MT功率水平和层面选择翻转角组合下获得的图像中颈脊髓和脑脊液(CSF)的对比噪声比(C/N)。另外对10例患者应用MT获取轴面三维GRE图像并评估C/N。

结果

通过适度的MT功率水平和与CSF的恩斯特角相似的层面选择翻转角获得的定制二维MT GRE图像,与传统GRE图像相比,脊髓-CSF C/N平均提高了2.2 - 2.4倍(P <.001)。

结论

在临床颈椎检查中,MT GRE图像在显示椎间盘突出、椎间孔狭窄和脊髓内病变方面比传统GRE图像和T2加权自旋回波图像具有更好的清晰度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验