Suppr超能文献

颅内磁共振血管造影:单容积三维时间飞跃法与多重叠薄层采集技术的比较

Intracranial MR angiography: comparison of single-volume three-dimensional time-of-flight and multiple overlapping thin slab acquisition techniques.

作者信息

Davis W L, Blatter D D, Harnsberger H R, Parker D L

机构信息

Department of Radiology, University of Utah Medical Center, Salt Lake City 84132.

出版信息

AJR Am J Roentgenol. 1994 Oct;163(4):915-20. doi: 10.2214/ajr.163.4.8092035.

Abstract

OBJECTIVE

Time-of-flight (TOF) MR angiography has continued to evolve during the past few years. Signal loss due to flow saturation is a major problem of single-volume (slab) three-dimensional (3D) TOF technique. A multislab 3D TOF method, multiple overlapping thin slab acquisition (MOTSA), shows decreased sensitivity to the effects of flow saturation and therefore should result in better images.

SUBJECTS AND METHODS

To evaluate the difference between MOTSA and the traditional single-volume 3D TOF techniques, we performed sequential, location-matched studies in 17 prospectively chosen patients with intracranial vascular abnormalities. All MOTSA and 3D TOF images were obtained after cut-film or 1024 digital angiography.

RESULTS

According to specific criteria, abnormalities were better visualized with the MOTSA technique than with the single-volume 3D TOF technique. The difference was most marked in patients with more complex vascular abnormalities.

CONCLUSION

We conclude that MOTSA is better than single-volume 3D TOF for showing intracranial abnormalities. The major advantage of MOTSA is decreased sensitivity to flow saturation.

摘要

目的

在过去几年中,飞行时间(TOF)磁共振血管造影技术不断发展。血流饱和导致的信号丢失是单容积(层块)三维(3D)TOF技术的一个主要问题。一种多层块3D TOF方法,即多重叠薄层采集(MOTSA),对血流饱和效应的敏感性降低,因此应该能产生更好的图像。

对象与方法

为评估MOTSA与传统单容积3D TOF技术之间的差异,我们对17例经前瞻性选择的颅内血管异常患者进行了顺序、位置匹配研究。所有MOTSA和3D TOF图像均在断层摄影或1024数字血管造影后获得。

结果

根据特定标准,与单容积3D TOF技术相比,MOTSA技术能更好地显示异常情况。这种差异在血管异常更复杂的患者中最为明显。

结论

我们得出结论,在显示颅内异常方面,MOTSA优于单容积3D TOF。MOTSA的主要优点是对血流饱和的敏感性降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验