Hermans M M, de Graaff E, Kroos M A, Wisselaar H A, Willemsen R, Oostra B A, Reuser A J
Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands.
Biochem J. 1993 Feb 1;289 ( Pt 3)(Pt 3):687-93. doi: 10.1042/bj2890687.
Glycogen-storage disease type II (GSDII) is caused by the deficiency of lysosomal alpha-glucosidase (acid maltase). This paper reports on the analysis of the mutant alleles in an American black patient with an adult form of GSDII (GM1935). The lysosomal alpha-glucosidase precursor of this patient has abnormal molecular features: (i) the molecular mass is decreased, (ii) the phosphorylation is deficient and (iii) the proteolytic processing is impaired. Sequence analysis revealed four mutations leading to amino acid alterations: Asp-645-->Glu, Val-816-->Ile, Arg-854-->Stop and Thr-927-->Ile. By using allele-specific oligonucleotide hybridization on PCR-amplified cDNA we have demonstrated that the Arg-854-->Stop mutation is located in one allele that is not expressed, and that the other allele contains the remaining three mutations. Each of the mutations was introduced in wild-type cDNA and expressed in COS cells to analyse the effect on biosynthesis, transport and phosphorylation of lysosomal alpha-glucosidase. The Val-816-->Ile substitution appeared to have no significant effect in contrast with results [Martiniuk, Mehler, Bodkin, Tzall, Hirshhorn, Zhong and Hirschhorn (1991) DNA Cell Biol. 10, 681-687] and was therefore defined as a polymorphism. The Thr-927-->Ile substitution deleting one of the seven glycosylation sites was found to be responsible for the decrease in molecular-mass, but not for the deficient proteolytic processing and phosphorylation. It did not cause the enzyme deficiency either. The third mutation leading to the Asp-645-->Glu substitution was proven to account in full for the observed defects in transport, phosphorylation and proteolytic processing of the newly synthesized alpha-glucosidase precursor of the patient.
II型糖原贮积病(GSDII)由溶酶体α-葡萄糖苷酶(酸性麦芽糖酶)缺乏引起。本文报道了对一名患有成人型GSDII(GM1935)的美国黑人患者突变等位基因的分析。该患者的溶酶体α-葡萄糖苷酶前体具有异常的分子特征:(i)分子量降低;(ii)磷酸化缺陷;(iii)蛋白水解加工受损。序列分析揭示了四个导致氨基酸改变的突变:Asp-645→Glu、Val-816→Ile、Arg-854→Stop和Thr-927→Ile。通过对PCR扩增的cDNA进行等位基因特异性寡核苷酸杂交,我们证明Arg-854→Stop突变位于一个不表达的等位基因中,另一个等位基因包含其余三个突变。将每个突变引入野生型cDNA并在COS细胞中表达,以分析其对溶酶体α-葡萄糖苷酶生物合成、运输和磷酸化的影响。与[Martiniuk、Mehler、Bodkin、Tzall、Hirshhorn、Zhong和Hirshhorn(1991)DNA细胞生物学。10,681 - 687]的结果相比,Val-816→Ile替代似乎没有显著影响,因此被定义为一种多态性。发现Thr-927→Ile替代删除了七个糖基化位点之一,这导致了分子量的降低,但不是蛋白水解加工和磷酸化缺陷的原因。它也没有导致酶缺乏。导致Asp-645→Glu替代的第三个突变被证明完全解释了患者新合成的α-葡萄糖苷酶前体在运输、磷酸化和蛋白水解加工中观察到的缺陷。