Di Donato L, Des Rosiers C, Montgomery J A, David F, Garneau M, Brunengraber H
Department of Biochemistry, University of Montréal, Québec, Canada.
J Biol Chem. 1993 Feb 25;268(6):4170-80.
Absolute rates of gluconeogenesis and of the citric acid cycle were assessed in livers isolated from 24-h starved rats, perfused with physiological concentrations of [3-13C]lactate and [3-13C]pyruvate +/- 0.2 mM octanoate. Calculations are based on (i) the 13C-labeling pattern of glutamate determined by gas chromatography-mass spectrometry combined with isotopomer analysis, (ii) substrate balance, and (iii) equations developed by Magnusson et al. (Magnusson, I., Schumann, W. C., Bartsch, G. E., Chandramouli, V., Kumaran, K., Wahren, J., and Landau, B. R. (1991) J. Biol. Chem. 266, 6975-6984) based on a citric acid cycle model proposed by Katz (Katz, J. (1985) Am. J. Physiol. 248, R391-R399). Glutamate, isolated from liver extracts, is enzymatically or chemically converted to gamma-aminobutyrate, alpha-hydroxyglutarate, isocitrate, and glutamine before mass spectrometric analysis. General equations have been developed ("Appendix I") to determine the isotopic enrichment of each carbon of glutamate from the isotopic enrichment of fragments obtained from the mass spectra of trimethylsilyl or t-butyldimethylsilyl derivatives of glutamate and of derived compounds ("Appendix II"). In the presence of octanoate, (i) the rate of the citric acid cycle decreases from 0.25 to 0.13 mumol/min x g wet weight which are one-third and one-sixth of the rate of pyruvate carboxylation, and (ii) the rate of gluconeogenesis increases from 0.65 to 0.83 mumol/min x g wet weight. The rate of pyruvate carboxylation is 13 and 34-fold faster than that of pyruvate dehydrogenation in the absence or presence of octanoate, respectively. The rate of oxaloacetate to fumarate interconversion is at least six times greater than that of the citric acid cycle. Our data closely agree with those obtained by Magnusson et al. who used a non-invasive "chemical biopsy" of the human liver and support the use of labeled lactate and/or pyruvate for tracing hepatic metabolism in vivo.
在从饥饿24小时的大鼠分离出的肝脏中评估糖异生作用和柠檬酸循环的绝对速率,这些肝脏用生理浓度的[3-13C]乳酸盐和[3-13C]丙酮酸盐±0.2 mM辛酸进行灌注。计算基于:(i) 通过气相色谱-质谱联用同位素异构体分析确定的谷氨酸的13C标记模式;(ii) 底物平衡;(iii) 由Magnusson等人(Magnusson, I., Schumann, W. C., Bartsch, G. E., Chandramouli, V., Kumaran, K., Wahren, J., and Landau, B. R. (1991) J. Biol. Chem. 266, 6975-6984)根据Katz提出的柠檬酸循环模型(Katz, J. (1985) Am. J. Physiol. 248, R391-R399)推导的方程式。从肝脏提取物中分离出的谷氨酸在进行质谱分析之前,通过酶促或化学方法转化为γ-氨基丁酸、α-羟基戊二酸、异柠檬酸和谷氨酰胺。已经推导了通用方程式(“附录I”),用于根据从谷氨酸及其衍生化合物的三甲基硅烷基或叔丁基二甲基硅烷基衍生物的质谱获得的片段的同位素丰度来确定谷氨酸每个碳原子的同位素丰度(“附录II”)。在存在辛酸的情况下,(i) 柠檬酸循环的速率从0.25降至0.13 μmol/min × g湿重,分别是丙酮酸羧化速率的三分之一和六分之一;(ii) 糖异生作用的速率从0.65增加到0.83 μmol/min × g湿重。在不存在或存在辛酸的情况下,丙酮酸羧化的速率分别比丙酮酸脱氢的速率快13倍和34倍。草酰乙酸向富马酸的相互转化速率至少比柠檬酸循环的速率大六倍。我们的数据与Magnusson等人通过对人体肝脏进行非侵入性“化学活检”获得的数据密切一致,并支持使用标记的乳酸盐和/或丙酮酸盐来追踪体内肝脏代谢。