Suppr超能文献

Effects of dimethylthiourea on selective neuronal vulnerability in forebrain ischemia in rats.

作者信息

Pahlmark K, Folbergrová J, Smith M L, Siesjö B K

机构信息

Laboratory of Experimental Brain Research, University of Lund, Sweden.

出版信息

Stroke. 1993 May;24(5):731-6; discussion 736-7. doi: 10.1161/01.str.24.5.731.

Abstract

BACKGROUND AND PURPOSE

Attempts have been made to characterize conditions under which oxygen free radicals contribute to ischemic brain damage. According to one hypothesis, free radicals are likely mediators of damage only when ischemia is of such long duration that infarction develops or when either preischemic hyperglycemia or hyperthermia is present. The objective of the present study was to explore whether 15 minutes of forebrain ischemia, an insult that leads to selective neuronal vulnerability but not to infarction, is accompanied by production of pathogenetically important free radicals.

METHODS

Using a histopathological end point, we studied amelioration of damage by a free radical scavenger, dimethylthiourea, administered in a dose of 750 mg/kg i.p. 60 minutes before ischemia. To study whether this insult leads to detectable protein oxidation we assessed the activity of glutamine synthetase and of carbonyl compounds in the soluble protein fraction.

RESULTS

In control animals, the transient ischemia resulted in the expected damage to vulnerable neurons in hippocampus, caudoputamen, and neocortex after 7 days of recovery. Glutamine synthetase activity in caudoputamen and hippocampus and carbonyl content in the soluble protein fraction after 90 minutes of recovery were not affected. However, dimethylthiourea significantly reduced damage to hippocampus and caudoputamen (p < 0.001) and neocortex (p < 0.005).

CONCLUSIONS

Lack of evidence of protein oxidation supports the notion that 15 minutes of forebrain ischemia results in a limited insult, confined to the neurons. Provided that unspecific effects can be excluded, the results obtained with dimethylthiourea suggest that free radicals contribute to selective neuronal necrosis.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验