Suppr超能文献

New pyridobenzodiazepine derivatives as potential antipsychotics: synthesis and neurochemical study.

作者信息

Liégeois J F, Bruhwyler J, Damas J, Nguyen T P, Chleide E M, Mercier M G, Rogister F A, Delarge J E

机构信息

Laboratory of Medicinal Chemistry, University of Liège, Belgium.

出版信息

J Med Chem. 1993 Jul 23;36(15):2107-14. doi: 10.1021/jm00067a009.

Abstract

The discovery of a new, safe, atypical antipsychotic remains an important challenge. To achieve this goal, a series of N-methylpiperazinopyrido[2,3-b] [1,4]- and -[1,5]- and -pyrido[4,3-b][1,4]- and -[1,5]- benzodiazepines were synthesized. The dopaminergic (D1, D2), serotonergic (5-HT2), and cholinergic (M) affinities, frequently remarked in the action mechanisms of antipsychotic drugs, were determined using their respective in vitro receptor binding assays. All affinities were reduced for each compound. Optimal substituents were found to be in the 2- or 8-position for the retention of affinities, while substitution at the 5-position by acyl or alkyl groups dramatically diminished binding affinities. Pyridobenzodiazepine derivatives, such as clozapine, were found to be inactive or only weakly effective against apomorphine-mediated stereotypes in rats. In an original and complex behavioral model developed in dogs and successfully used to differentiate distinct classes of psychotropic drugs and to discriminate between typical and atypical neuroleptic drugs, 8-chloro-6-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b] [1,4]benzodiazepine (9), 8-methyl-6-(4-methyl-1-piperazinyl)-11H-pyrido [2,3-b][1,4]benzodiazepine (12), and 5-(4-methyl-1-piperazinyl)-11H-pyrido[2,3-b][1,5]benzodiazepine (16) showed most of the behavioral characteristics previously described for neuroleptics. Their neurochemical profiles, particularly their 5-HT2/D2 pKi ratios, were compatible with an atypical antipsychotic effect. These compounds were selected for further investigation. The proposed modulations could lead to new possibilities for the pharmacochemistry of diarylazepines.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验