Sekine N, Cirulli V, Regazzi R, Brown L J, Gine E, Tamarit-Rodriguez J, Girotti M, Marie S, MacDonald M J, Wollheim C B
Department de Médecine, University of Geneva, Switzerland.
J Biol Chem. 1994 Feb 18;269(7):4895-902.
Nutrient metabolism was examined with regard to insulin secretion in purified rat islet beta- and non-beta-cells, beta-cell lines, and hepatocytes. Lactate dehydrogenase (LDH) activity (nanomoles.min-1.mg protein-1) was remarkably low in the glucose-sensitive INS-1 cell line (15.7) and in beta-cells (22.3). Thus, beta-cell LDH was respectively 8-, 122-, 17-, and 136-fold lower than in islet non-beta, liver, HIT-T15, and RINm5F cells. Plasma membrane lactate transport activity was 3-10-fold lower in beta- or INS-1 cells than in the other cell types. Conversely, mitochondrial glycerol phosphate dehydrogenase was strongly expressed only in beta- and INS-1 cells. The significance of these findings to nutrient recognition was explored using INS-1 cells as a model of native beta-cells. Glucose-stimulated lactate output and glucose utilization were, respectively, 12- and 5-fold lower in INS-1 than in RINm5F cells. Each process was entirely blocked by respiratory chain inhibitors in INS-1 cells, whereas glucose utilization was barely affected and lactate output stimulated in RINm5F cells. Glucose oxidation represented 73% of total utilization in INS-1 cells, but only 9% in RINm5F cells. Absolute rates of glucose oxidation, and the extent of mitochondrial NAD(P) reduction, were similar in the two cell types, and glucose stimulated insulin secretion 1.9-fold in INS-1 and 1.4-fold in RINm5F cells. The mitochondrial substrates, monomethyl succinate, pyruvate, and leucine, each triggered secretion in INS-1 cells. The balance of LDH, plasma membrane lactate transport, and mitochondrial glycerol phosphate dehydrogenase activities therefore appear to be important in beta- and INS-1 cell glucose recognition to ensure that mitochondrial oxidation is the principle fate of pyruvate and NADH produced by glycolysis. The resultant close coupling of glycolysis with mitochondrial oxidation explains the absence in beta-cells of Crabtree and Pasteur effects.
在纯化的大鼠胰岛β细胞和非β细胞、β细胞系及肝细胞中,针对胰岛素分泌对营养物质代谢进行了研究。葡萄糖敏感的INS-1细胞系(15.7)和β细胞(22.3)中的乳酸脱氢酶(LDH)活性(纳摩尔·分钟⁻¹·毫克蛋白⁻¹)显著较低。因此,β细胞中的LDH分别比胰岛非β细胞、肝细胞、HIT-T15细胞和RINm5F细胞低8倍、122倍、17倍和136倍。β细胞或INS-1细胞中的质膜乳酸转运活性比其他细胞类型低3至10倍。相反,线粒体甘油磷酸脱氢酶仅在β细胞和INS-1细胞中强烈表达。以INS-1细胞作为天然β细胞的模型,探讨了这些发现对营养物质识别的意义。INS-1细胞中葡萄糖刺激的乳酸输出和葡萄糖利用分别比RINm5F细胞低12倍和5倍。在INS-1细胞中,每个过程都被呼吸链抑制剂完全阻断,而在RINm5F细胞中,葡萄糖利用几乎不受影响,乳酸输出受到刺激。葡萄糖氧化在INS-1细胞的总利用中占73%,但在RINm5F细胞中仅占9%。两种细胞类型中葡萄糖氧化的绝对速率以及线粒体NAD(P)还原程度相似,葡萄糖刺激INS-1细胞中胰岛素分泌增加1.9倍,刺激RINm5F细胞中胰岛素分泌增加1.4倍。线粒体底物单甲基琥珀酸、丙酮酸和亮氨酸各自在INS-1细胞中触发分泌。因此,LDH、质膜乳酸转运和线粒体甘油磷酸脱氢酶活性的平衡在β细胞和INS-1细胞对葡萄糖的识别中似乎很重要,以确保线粒体氧化是糖酵解产生的丙酮酸和NADH的主要归宿。糖酵解与线粒体氧化之间由此产生的紧密偶联解释了β细胞中不存在克氏效应和巴斯德效应的原因。