Stamenkovic Jelena A, Andersson Lotta E, Adriaenssens Alice E, Bagge Annika, Sharoyko Vladimir V, Gribble Fiona, Reimann Frank, Wollheim Claes B, Mulder Hindrik, Spégel Peter
*Unit of Molecular Metabolism, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, CRC, Lund University, Skåne University Hospital, Malmö 205 02, Sweden.
†MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Sciences, Addenbrooke's Hospital, Cambridge CB2 0XY, U.K.
Biochem J. 2015 May 15;468(1):49-63. doi: 10.1042/BJ20140697.
Altered secretion of insulin as well as glucagon has been implicated in the pathogenesis of Type 2 diabetes (T2D), but the mechanisms controlling glucagon secretion from α-cells largely remain unresolved. Therefore, we studied the regulation of glucagon secretion from αTC1-6 (αTC1 clone 6) cells and compared it with insulin release from INS-1 832/13 cells. We found that INS-1 832/13 and αTC1-6 cells respectively secreted insulin and glucagon concentration-dependently in response to glucose. In contrast, tight coupling of glycolytic and mitochondrial metabolism was observed only in INS-1 832/13 cells. Although glycolytic metabolism was similar in the two cell lines, TCA (tricarboxylic acid) cycle metabolism, respiration and ATP levels were less glucose-responsive in αTC1-6 cells. Inhibition of the malate-aspartate shuttle, using phenyl succinate (PhS), abolished glucose-provoked ATP production and hormone secretion from αTC1-6 but not INS-1 832/13 cells. Blocking the malate-aspartate shuttle increased levels of glycerol 3-phosphate only in INS-1 832/13 cells. Accordingly, relative expression of constituents in the glycerol phosphate shuttle compared with malate-aspartate shuttle was lower in αTC1-6 cells. Our data suggest that the glycerol phosphate shuttle augments the malate-aspartate shuttle in INS-1 832/13 but not αTC1-6 cells. These results were confirmed in mouse islets, where PhS abrogated secretion of glucagon but not insulin. Furthermore, expression of the rate-limiting enzyme of the glycerol phosphate shuttle was higher in sorted primary β- than in α-cells. Thus, suppressed glycerol phosphate shuttle activity in the α-cell may prevent a high rate of glycolysis and consequently glucagon secretion in response to glucose. Accordingly, pyruvate- and lactate-elicited glucagon secretion remains unaffected since their signalling is independent of mitochondrial shuttles.
胰岛素以及胰高血糖素分泌的改变与2型糖尿病(T2D)的发病机制有关,但控制α细胞分泌胰高血糖素的机制在很大程度上仍未得到解决。因此,我们研究了αTC1-6(αTC1克隆6)细胞中胰高血糖素分泌的调节,并将其与INS-1 832/13细胞中胰岛素的释放进行了比较。我们发现,INS-1 832/13细胞和αTC1-6细胞分别对葡萄糖作出反应,以浓度依赖的方式分泌胰岛素和胰高血糖素。相比之下,仅在INS-1 832/13细胞中观察到糖酵解和线粒体代谢的紧密偶联。尽管两种细胞系中的糖酵解代谢相似,但αTC1-6细胞中的三羧酸(TCA)循环代谢、呼吸作用和ATP水平对葡萄糖的反应性较低。使用苯基琥珀酸盐(PhS)抑制苹果酸-天冬氨酸穿梭,消除了αTC1-6细胞中葡萄糖引发的ATP产生和激素分泌,但对INS-1 832/13细胞没有影响。阻断苹果酸-天冬氨酸穿梭仅在INS-1 832/13细胞中增加了3-磷酸甘油的水平。因此,与苹果酸-天冬氨酸穿梭相比,αTC1-6细胞中磷酸甘油穿梭成分的相对表达较低。我们的数据表明,磷酸甘油穿梭增强了INS-1 832/13细胞中的苹果酸-天冬氨酸穿梭,但对αTC1-6细胞没有作用。这些结果在小鼠胰岛中得到证实,在那里PhS消除了胰高血糖素的分泌,但没有消除胰岛素的分泌。此外,分选的原代β细胞中磷酸甘油穿梭限速酶的表达高于α细胞。因此,α细胞中磷酸甘油穿梭活性的抑制可能会阻止糖酵解的高速率,从而阻止对葡萄糖作出反应的胰高血糖素分泌。因此,丙酮酸和乳酸引发的胰高血糖素分泌不受影响,因为它们的信号传导独立于线粒体穿梭。