Suppr超能文献

试样承载层和自由表面层对多孔材料压缩力学性能的影响。

Effects of specimen load-bearing and free surface layers on the compressive mechanical properties of cellular materials.

作者信息

Zhu M, Keller T S, Spengler D M

机构信息

Dept of Orthopaedics & Rehabilitation, Vanderbilt University, Nashville, TN 37232.

出版信息

J Biomech. 1994 Jan;27(1):57-66. doi: 10.1016/0021-9290(94)90032-9.

Abstract

The influence of load-bearing surface layers on Young's modulus was determined for cancellous bone and polyurethane foam specimens of three different heights cut from each material: 16, 9, and 5 mm for bone specimens (cross-sectional area A = 81 mm2) ranging in density from 0.04 to 0.32 g cm-3; 20, 10, and 5 mm for foam specimens (A = 100 mm2) ranging in density from 0.064 to 0.64 g cm-3. The compressive elastic modulus of the 5 mm bone specimens was significantly smaller (42%) than that of the 16 mm bone specimens. A similar change in elastic modulus was also observed for the foam specimens, but the height effect diminished in a relatively linear manner as the foam density increased. For a height change from 20 to 5 mm, the foam modulus difference ranged from a 41% decrease for the lowest density specimens (p = 0.064 g cm-3) to an insignificant change (< 1.8%) for the highest foam density specimens (p = 0.64 g cm-3). The specimen height effect on elastic modulus was hypothesized to result from a higher deformation (compliance) of the cellular materials in the load-bearing or contacting surface layer than in the bulk. A mathematical formula was derived to predict the variation in measured elastic modulus (E) caused by the contacting surface layer modulus (Ecs) to bulk modulus (Eb) ratio (Y = Ecs/Eb) and contacting surface layer height (hcs) to sample height (h) ratio (t = hcs/h): E/Eb = Y/[Y(1-t)+t]. Predicted differences in the measured modulus associated with graduated specimen heights were verified experimentally by regional strain measurements of the foam and bone samples using an optical microscope. The influence of free-surface layers was also determined for the foam specimens with cross-sectional areas 1.21 and 10 times the load-bearing area of a load platen, but the measured differences were small (< 10%) compared to that of the load-bearing surface layer influence. In future compressive mechanical testing of cellular materials, specimens < 10 mm in height should be avoided, particularly specimens with low bulk density or high porosity.

摘要

针对从每种材料切割出的三种不同高度的松质骨和聚氨酯泡沫样本,测定了承载表面层对杨氏模量的影响:骨样本(横截面积A = 81 mm²)高度为16、9和5 mm,密度范围为0.04至0.32 g/cm³;泡沫样本(A = 100 mm²)高度为20、10和5 mm,密度范围为0.064至0.64 g/cm³。5 mm骨样本的压缩弹性模量比16 mm骨样本的显著小(42%)。泡沫样本也观察到类似的弹性模量变化,但随着泡沫密度增加,高度效应以相对线性的方式减弱。对于高度从20 mm变为5 mm的情况,泡沫模量差异范围从最低密度样本(p = 0.064 g/cm³)的41%下降到最高泡沫密度样本(p = 0.64 g/cm³)的不显著变化(< 1.8%)。推测样本高度对弹性模量的影响是由于承载或接触表面层中多孔材料的变形(柔顺性)高于主体部分。推导了一个数学公式来预测由接触表面层模量(Ecs)与体模量(Eb)之比(Y = Ecs/Eb)以及接触表面层高度(hcs)与样本高度(h)之比(t = hcs/h)引起的测量弹性模量(E)的变化:E/Eb = Y/[Y(1 - t)+t]。通过使用光学显微镜对泡沫和骨样本进行区域应变测量,实验验证了与渐变样本高度相关的测量模量的预测差异。对于横截面积为加载压板承载面积1.21倍和10倍的泡沫样本,也测定了自由表面层的影响,但与承载表面层影响相比,测量差异较小(< 10%)。在未来对多孔材料的压缩力学测试中,应避免使用高度小于10 mm的样本,特别是低体密度或高孔隙率的样本。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验