Suppr超能文献

山梨醇和胞质氧化还原状态对大鼠肝细胞中葡萄糖激酶易位的调控

Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.

作者信息

Agius L

机构信息

Department of Medicine, University of Newcastle upon Tyne, U.K.

出版信息

Biochem J. 1994 Feb 15;298 ( Pt 1)(Pt 1):237-43. doi: 10.1042/bj2980237.

Abstract

In rat hepatocytes cultured in 5 mM glucose, glucokinase activity is present predominantly in a bound state, and during permeabilization of the cells with digitonin in the presence of Mg2+ less than 20% of glucokinase activity is released. However, incubation of hepatocytes with a higher [glucose] [concn. giving half-maximal activation (A50) 15 mM] or with fructose (A50 50 microM) causes translocation of glucokinase from its Mg(2+)-dependent binding site to an alternative site [Agius and Peak (1993) Biochem. J. 296, 785-796]. A comparison of various substrates showed that sorbitol (A50 8 microM) was 6-fold more potent than fructose at causing glucokinase translocation, whereas tagatose was as potent and mannitol was > 10-fold less potent (A50 550 microM). These substrates also stimulate glucose conversion into glycogen with a similar relative potency, suggesting that conversion of glucose into glycogen is dependent on the binding and/or location of glucokinase within the hepatocyte. Ethanol and glycerol inhibited the effects of fructose, sorbitol and glucose on glucokinase translocation, whereas dihydroxy-acetone had a small additive effect at sub-maximal substrate stimulation. The converse effects of glycerol and dihydroxy-acetone suggest a role for the cytosolic NADH/NAD+ redox state in controlling glucokinase translocation. Titrations with three competitive inhibitors of glucokinase did not provide evidence for involvement of glucokinase flux in glucose-induced glucokinase translocation: N-acetylglucosamine inhibited glucose conversion into glycogen, but not glucose-induced glucokinase translocation; glucosamine partially suppressed glucose-induced and fructose-induced glucokinase translocation, at concentrations that caused total inhibition of glucose conversion into glycogen; D-mannoheptulose increased glucokinase release and had an additive effect with glucose. 3,3'-Tetramethylene-glutaric acid (5 mM), an inhibitor of aldose reductase, inhibited glucokinase translocation induced by glucose, but not that by sorbitol or fructose, suggesting that glucose may induce glucokinase translocation by conversion into sorbitol. Sorbitol generated from glucose intrahepatically or extrahepatically in hyperglycaemic conditions may be a physiological regulator of hepatic glucokinase translocation.

摘要

在以5 mM葡萄糖培养的大鼠肝细胞中,葡萄糖激酶活性主要以结合状态存在,在用洋地黄皂苷在Mg2+存在下使细胞通透化的过程中,释放的葡萄糖激酶活性不到20%。然而,用较高浓度的葡萄糖(半数最大激活浓度[A50]为15 mM)或果糖(A50为50 microM)孵育肝细胞会导致葡萄糖激酶从其Mg(2+)依赖性结合位点转移至另一个位点[阿吉厄斯和皮克(1993年)《生物化学杂志》296卷,785 - 796页]。对各种底物的比较表明,山梨醇(A50为8 microM)在引起葡萄糖激酶转移方面的效力比果糖高6倍,而塔格糖的效力与之相当,甘露醇的效力则低10倍以上(A50为550 microM)。这些底物还以类似的相对效力刺激葡萄糖转化为糖原,这表明葡萄糖转化为糖原取决于葡萄糖激酶在肝细胞内的结合和/或定位。乙醇和甘油抑制果糖、山梨醇和葡萄糖对葡萄糖激酶转移的作用,而二羟基丙酮在亚最大底物刺激时具有较小的相加作用。甘油和二羟基丙酮的相反作用表明细胞溶质NADH/NAD+氧化还原状态在控制葡萄糖激酶转移中起作用。用三种葡萄糖激酶竞争性抑制剂进行滴定未提供葡萄糖激酶通量参与葡萄糖诱导的葡萄糖激酶转移的证据:N - 乙酰葡糖胺抑制葡萄糖转化为糖原,但不抑制葡萄糖诱导的葡萄糖激酶转移;葡糖胺在导致葡萄糖转化为糖原完全抑制的浓度下部分抑制葡萄糖诱导和果糖诱导的葡萄糖激酶转移;D - 甘露庚酮糖增加葡萄糖激酶释放,并与葡萄糖有相加作用。3,3'-四亚甲基 - 戊二酸(5 mM),一种醛糖还原酶抑制剂,抑制葡萄糖诱导的葡萄糖激酶转移,但不抑制山梨醇或果糖诱导的转移,这表明葡萄糖可能通过转化为山梨醇来诱导葡萄糖激酶转移。在高血糖条件下肝内或肝外由葡萄糖生成的山梨醇可能是肝葡萄糖激酶转移的生理调节剂。

相似文献

1
Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.
Biochem J. 1994 Feb 15;298 ( Pt 1)(Pt 1):237-43. doi: 10.1042/bj2980237.
2
Hexokinase and glucokinase binding in permeabilized guinea-pig hepatocytes.
Biochem J. 1994 Nov 1;303 ( Pt 3)(Pt 3):841-6. doi: 10.1042/bj3030841.
4
Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin.
Biochem J. 1993 Dec 15;296 ( Pt 3)(Pt 3):785-96. doi: 10.1042/bj2960785.
5
The physiological role of glucokinase binding and translocation in hepatocytes.
Adv Enzyme Regul. 1998;38:303-31. doi: 10.1016/s0065-2571(97)00001-0.
8
Substrate modulation of aldolase B binding in hepatocytes.
Biochem J. 1996 Apr 15;315 ( Pt 2)(Pt 2):651-8. doi: 10.1042/bj3150651.

引用本文的文献

1
Aldose reductase, fructose and fat production in the liver.
Biochem J. 2025 Mar 5;482(5):295-307. doi: 10.1042/BCJ20240748.
5
Continuous low-dose fructose infusion does not reverse glucagon-mediated decrease in hepatic glucose utilization.
Metabolism. 2011 Jun;60(6):867-73. doi: 10.1016/j.metabol.2010.08.006. Epub 2010 Oct 12.
6
Time-dependent mechanisms in beta-cell glucose sensing.
J Biol Phys. 2006 Oct;32(3-4):289-306. doi: 10.1007/s10867-006-9017-9. Epub 2006 Nov 9.

本文引用的文献

1
Red cell sorbitol: an indicator of diabetic control.
Diabetes. 1980 Nov;29(11):861-4. doi: 10.2337/diab.29.11.861.
2
Interaction of muscle glycolytic enzymes with thin filament proteins.
Can J Biochem. 1981 Jul;59(7):494-9. doi: 10.1139/o81-069.
3
4
Glucose metabolism in mouse pancreatic islets.
Biochem J. 1970 Jun;118(1):143-54. doi: 10.1042/bj1180143.
5
The stimulus-secretion coupling of glucose-induced insulin release. Sorbitol metabolism in isolated islets.
Eur J Biochem. 1974 Sep 1;47(2):365-70. doi: 10.1111/j.1432-1033.1974.tb03701.x.
6
Polyol metabolism in monkey-kidney epithelial-cell cultures. Sorbitol synthesis.
Eur J Biochem. 1974 Nov 15;49(2):347-53. doi: 10.1111/j.1432-1033.1974.tb03839.x.
7
The indirect binding of triose-phosphate isomerase to myofibrils to form a glycolytic enzyme mini-complex.
Biochim Biophys Acta. 1986 Sep 5;873(1):127-35. doi: 10.1016/0167-4838(86)90198-6.
8
Development of an automated Lowry protein assay for the Cobas-Bio centrifugal analyzer.
Anal Biochem. 1988 Jul;172(1):165-8. doi: 10.1016/0003-2697(88)90426-5.
9
Role of aldose reductase and sorbitol in maintaining the medullary intracellular milieu.
Kidney Int. 1988 Mar;33(3):635-41. doi: 10.1038/ki.1988.46.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验