Suppr超能文献

果糖、己糖醇及其他化合物调节大鼠肝细胞中葡萄糖激酶转位机制的研究。

Investigation on the mechanism by which fructose, hexitols and other compounds regulate the translocation of glucokinase in rat hepatocytes.

作者信息

Niculescu L, Veiga-da-Cunha M, Van Schaftingen E

机构信息

Laboratoire de Chimie Physiologique, Université Catholique de Louvain, Brussels, Belgium.

出版信息

Biochem J. 1997 Jan 1;321 ( Pt 1)(Pt 1):239-46. doi: 10.1042/bj3210239.

Abstract

In isolated hepatocytes in suspension, the effect of sorbitol but not that of fructose to increase the concentration of fructose 1-phosphate and to stimulate glucokinase was abolished by 2-hydroxymethyl-4-(4-N,N-dimethylamino-1-piperazino)-pyrimidine (SDI 158), an inhibitor of sorbitol dehydrogenase. In hepatocytes in primary culture, fructose was metabolized at approximately one-quarter of the rate of sorbitol, and was therefore much less potent than the polyol in increasing the concentration of fructose 1-phosphate and the translocation of glucokinase. In cultures, sorbitol, commercial mannitol, fructose, D-glyceraldehyde or high concentrations of glucose caused fructose 1-phosphate formation and glucokinase translocation in parallel. Commercial mannitol was contaminated by approx. 1% sorbitol, which accounted for its effects. The effects of sorbitol, fructose and elevated concentrations of glucose were partly inhibited by ethanol, glycerol and glucosamine. Mannoheptulose increased translocation without affecting fructose 1-phosphate concentration. Kinetic studies performed with recombinant human beta-cell glucokinase indicated that this sugar, in contrast with N-acetylglucosamine, binds to glucokinase competitively with the regulatory protein. All these observations indicate that translocation is promoted by agents that favour the dissociation of the glucokinase-regulatory-protein complex either by binding to the regulatory protein (fructose I-phosphate) or to glucokinase (glucose, mannoheptulose). They support the hypothesis that the regulatory protein of glucokinase acts as an anchor for this enzyme that slows down its release from digitonin-permeabilized cells.

摘要

在悬浮的分离肝细胞中,山梨醇脱氢酶抑制剂2-羟甲基-4-(4-N,N-二甲基氨基-1-哌嗪基)-嘧啶(SDI 158)消除了山梨醇而非果糖增加1-磷酸果糖浓度和刺激葡萄糖激酶的作用。在原代培养的肝细胞中,果糖的代谢速率约为山梨醇的四分之一,因此在增加1-磷酸果糖浓度和葡萄糖激酶转位方面,其效力远低于多元醇。在培养物中,山梨醇、市售甘露醇、果糖、D-甘油醛或高浓度葡萄糖会同时引起1-磷酸果糖形成和葡萄糖激酶转位。市售甘露醇被约1%的山梨醇污染,这解释了其作用机制。山梨醇、果糖和高浓度葡萄糖的作用部分受到乙醇、甘油和氨基葡萄糖的抑制。甘露庚酮糖增加了转位,但不影响1-磷酸果糖浓度。对重组人β细胞葡萄糖激酶进行的动力学研究表明,与N-乙酰葡糖胺不同,这种糖与调节蛋白竞争性结合葡萄糖激酶。所有这些观察结果表明,转位是由通过与调节蛋白(1-磷酸果糖)或葡萄糖激酶(葡萄糖、甘露庚酮糖)结合而促进葡萄糖激酶-调节蛋白复合物解离的物质所促进的。它们支持这样一种假说,即葡萄糖激酶的调节蛋白作为该酶的锚定物,减缓其从洋地黄皂苷通透细胞中的释放。

相似文献

2
Control of glucokinase translocation in rat hepatocytes by sorbitol and the cytosolic redox state.
Biochem J. 1994 Feb 15;298 ( Pt 1)(Pt 1):237-43. doi: 10.1042/bj2980237.
4
Hexokinase and glucokinase binding in permeabilized guinea-pig hepatocytes.
Biochem J. 1994 Nov 1;303 ( Pt 3)(Pt 3):841-6. doi: 10.1042/bj3030841.
5
Effectors of the regulatory protein acting on liver glucokinase: a kinetic investigation.
Eur J Biochem. 1991 Sep 1;200(2):553-61. doi: 10.1111/j.1432-1033.1991.tb16218.x.
6
Fructose 1-phosphate and the regulation of glucokinase activity in isolated hepatocytes.
Eur J Biochem. 1990 Sep 11;192(2):283-9. doi: 10.1111/j.1432-1033.1990.tb19225.x.
7
Intracellular binding of glucokinase in hepatocytes and translocation by glucose, fructose and insulin.
Biochem J. 1993 Dec 15;296 ( Pt 3)(Pt 3):785-96. doi: 10.1042/bj2960785.
9
The physiological role of glucokinase binding and translocation in hepatocytes.
Adv Enzyme Regul. 1998;38:303-31. doi: 10.1016/s0065-2571(97)00001-0.
10
The regulatory protein of liver glucokinase.
Adv Enzyme Regul. 1992;32:133-48. doi: 10.1016/0065-2571(92)90013-p.

引用本文的文献

2
Fructose might be a clue to the origin of preeclampsia insights from nature and evolution.
Hypertens Res. 2023 Mar;46(3):646-653. doi: 10.1038/s41440-022-01121-w. Epub 2022 Dec 20.
3
Fructose in the kidney: from physiology to pathology.
Kidney Res Clin Pract. 2021 Dec;40(4):527-541. doi: 10.23876/j.krcp.21.138. Epub 2021 Nov 1.
4
Molecular aspects of fructose metabolism and metabolic disease.
Cell Metab. 2021 Dec 7;33(12):2329-2354. doi: 10.1016/j.cmet.2021.09.010. Epub 2021 Oct 6.
5
Endogenous Fructose Metabolism Could Explain the Warburg Effect and the Protection of SGLT2 Inhibitors in Chronic Kidney Disease.
Front Immunol. 2021 Jun 16;12:694457. doi: 10.3389/fimmu.2021.694457. eCollection 2021.
6
The Protective Role of the Carbohydrate Response Element Binding Protein in the Liver: The Metabolite Perspective.
Front Endocrinol (Lausanne). 2020 Nov 17;11:594041. doi: 10.3389/fendo.2020.594041. eCollection 2020.
7
Clinical implications of the glucokinase impaired function - GCK MODY today.
Physiol Res. 2020 Dec 22;69(6):995-1011. doi: 10.33549/physiolres.934487. Epub 2020 Nov 2.
8
Fructose contributes to the Warburg effect for cancer growth.
Cancer Metab. 2020 Jul 10;8:16. doi: 10.1186/s40170-020-00222-9. eCollection 2020.
10
Fructose metabolism and metabolic disease.
J Clin Invest. 2018 Feb 1;128(2):545-555. doi: 10.1172/JCI96702.

本文引用的文献

1
Application of C Nuclear Magnetic Resonance To Elucidate the Unexpected Biosynthesis of Erythritol by Leuconostoc oenos.
Appl Environ Microbiol. 1992 Jul;58(7):2271-9. doi: 10.1128/aem.58.7.2271-2279.1992.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
3
[Aldose reductase].
Biochim Biophys Acta. 1960 Jan 1;37:120-6. doi: 10.1016/0006-3002(60)90085-8.
4
[The hexosephosphatase system. IV. Specificity of glucose-6-phosphatase].
Bull Soc Chim Biol (Paris). 1954;36(11-12):1525-37.
5
GLUCOKINASE OF RABBIT LIVER.
J Biol Chem. 1965 Mar;240:1014-8.
7
Enzymatic assays of fructose-1-phosphate and fructose-1,6-bisphosphate in the picomole range.
Anal Biochem. 1996 Mar 15;235(2):243-44. doi: 10.1006/abio.1996.0121.
10
Species and tissue distribution of the regulatory protein of glucokinase.
Biochem J. 1993 Sep 1;294 ( Pt 2)(Pt 2):551-6. doi: 10.1042/bj2940551.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验