Collier J L, Grossman A R
Carnegie Institution of Washington, Department of Plant Biology, Stanford, CA 94305.
EMBO J. 1994 Mar 1;13(5):1039-47. doi: 10.1002/j.1460-2075.1994.tb06352.x.
Phycobilisomes are the multiprotein complexes predominantly responsible for harvesting light energy in cyanobacteria and some eukaryotic algae. When the cyanobacterium Synechococcus sp. strain PCC 7942 is deprived of an essential nutrient, the phycobilisomes are specifically and rapidly degraded. Degradation may be either partial (after phosphorus deprivation) or complete (after sulfur or nitrogen deprivation). We have developed a visual screen to obtain mutants unable to degrade their phycobilisomes upon nutrient starvation. Complementation of one of these mutants led to the identification of a gene, designated nblA, that encodes a 59 amino acid polypeptide essential for phycobilisome degradation. Transcription of nblA increases dramatically in sulfur- or nitrogen-deprived cells and moderately in phosphorus-deprived cells. Using the phosphorus-regulated alkaline phosphatase (phoA) promoter as a tool, we engineered constructs from which we could control the expression of either sense or antisense nblA. Increased expression of sense nbLA caused complete phycobilisome degradation during phosphorus deprivation, while expression of antisense nblA prevented phycobilisome degradation. Hence, nblA is necessary, and may be sufficient, for the degradation of phycobilisomes under adverse environmental conditions. Further investigation of the mechanism by which nblA causes phycobilisome destruction may reveal general principles that govern the specificity of macromolecular complex degradation.
藻胆体是主要负责在蓝细菌和一些真核藻类中收集光能的多蛋白复合体。当蓝细菌聚球藻属(Synechococcus sp.)菌株PCC 7942缺乏必需营养物质时,藻胆体被特异性且快速地降解。降解可能是部分降解(在磷缺乏后)或完全降解(在硫或氮缺乏后)。我们开发了一种视觉筛选方法来获得在营养饥饿时无法降解其藻胆体的突变体。对其中一个突变体进行互补分析,鉴定出一个名为nblA的基因,该基因编码一种对藻胆体降解至关重要的59个氨基酸的多肽。nblA的转录在硫或氮缺乏的细胞中显著增加,在磷缺乏的细胞中适度增加。使用磷调控的碱性磷酸酶(phoA)启动子作为工具,我们构建了能够控制正义或反义nblA表达的构建体。正义nblA表达增加导致在磷缺乏期间藻胆体完全降解,而反义nblA的表达则阻止了藻胆体的降解。因此,nblA对于在不利环境条件下藻胆体的降解是必需的,并且可能是足够的。对nblA导致藻胆体破坏的机制进行进一步研究可能会揭示控制大分子复合体降解特异性的一般原理。