Edelstein C, Noyes C, Keim P, Heinrikson R L, Fellows R E, Scanu A M
Biochemistry. 1976 Mar 23;15(6):1262-8. doi: 10.1021/bi00651a014.
The covalent structure of apolipoprotein A-II, isolated from the serum high-density lipoprotein of a single male Rhesus monkey (Macaca mulatta), was determined. The amino acid sequence of this 77-residue polypeptide is: less than Glu-Ala-Glu-Glu-Pro5-Ser-Val-Glu-Ser-Leu10-Val-Ser-Gln-Tyr-Phe15-Gln-Thr-Val-Thr-Asp20-Tyr-Gly-Lys-Asp-Leu25-Met-Glu-Lys-Val-Lys30-Ser-Pro-Glu-Leu-Gln35-Ala-Gln-Ala-Lys-Ala40-Tyr-Phe-Glu-Lys-Ser45-Lys-Glu-Gln-Leu-Thr50-Pro-Leu-Val-Lys-Lys55-Ala-Gly-Thr-Asp-Leu60-Val-Asn-Phe-Leu-Ser65-Tyr-Phe-Val-Glu-Leu70-Arg-Thr-Gln-Pro-Ala75-Thr-Gln-COOH. A comparison of this structure to that of the monomeric form of human apolipoprotein A-II reveals a high degree of homology except for six conservative amino acid replacements (positions 3, 6, 40, 53, 59, and 71). Of particular structural significance is the replacement of cysteine by serine in position 6. This explaines why Rhesus A-II exists in monomeric form, contrary to the established dimeric nature of the human protein.