Suppr超能文献

Continued search for the cellular signals that regulate regeneration of dopaminergic neurons in goldfish retina.

作者信息

Braisted J E, Raymond P A

机构信息

Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109-0616.

出版信息

Brain Res Dev Brain Res. 1993 Dec 17;76(2):221-32. doi: 10.1016/0165-3806(93)90210-2.

Abstract

Intraocular injections of low doses (0.7-1.4 mM estimated intraocular concentration) of 6-hydroxydopamine (6OHDA) selectively destroy dopaminergic neurons in the inner nuclear layer (INL) of goldfish retina, and they never regenerate. However, injection of a higher dose of 6OHDA (2.9 mM) destroys > 30% (but not all) of the cells in both the INL and the outer nuclear layer (ONL), but within 3 weeks, neurons in both the INL (including dopaminergic neurons) and the ONL regenerate. We hypothesize that the regenerated neurons derive from mitotic rod precursors in the ONL and that damage to the surrounding micro-environment (i.e. destruction of photoreceptors) triggers the regenerative response. To directly test this hypothesis, we selectively ablated > 99% of dopaminergic neurons (with low doses of 6OHDA) and up to 55% of rod photoreceptors (with tunicamycin), and asked whether the dopaminergic neurons regenerated, as evidenced by double immunolabeling with anti-tyrosine hydroxylase and anti-bromodeoxyuridine. After 38 days, the number of bromodeoxyuridine-immunoreactive rod nuclei was increased 2.4-fold compared to controls, but no regenerated dopaminergic neurons were found. These data suggest that although the rate of rod production increases, rod precursors do not alter their normal pathway of development to replace dopaminergic neurons in the INL when damage to the ONL is limited to destruction of rods.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验