Bernier M, Liotta A S, Kole H K, Shock D D, Roth J
Diabetes Unit, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224.
Biochemistry. 1994 Apr 12;33(14):4343-51. doi: 10.1021/bi00180a031.
Using digitonin-permeabilized Chinese hamster ovary (CHO) cells that were transfected with intact human insulin receptors (CHO/HIRc cells), we examined insulin receptor phosphorylation and dephosphorylation using pulse-chase techniques. Insulin activated receptor autophosphorylation on tyrosyl residues to a level severalfold over basal, reaching maximal levels after 2, 5, and 10 min of stimulation at 34, 18, and 6 degrees C, respectively. Phosphopeptide analysis revealed that the triply phosphorylated form of the 1146-kinase domain of the insulin receptor was the major species, which is characteristic of the fully active tyrosine kinase function. The dephosphorylation reaction was time- and temperature-dependent with t1/2 values of 0.67 and 2 min at 18 and 6 degrees C, respectively. Vanadate completely inhibited dephosphorylation. Under similar permeabilization conditions when compared with CHO/HIRc cells, CHO/delta CT cells (CHO cells overexpressing a mutated form of the receptor with a 43 amino acid deletion at the C-terminus) stimulated with insulin exhibited larger increases in receptor autophosphorylation levels and in tyrosine kinase activity toward a synthetic peptide substrate; the rate of CHO/delta CT receptor dephosphorylation was not reduced. There was near-complete absence of insulin receptor substrate 1 (IRS-1) in the cell ghosts after permeabilization. We therefore examined the pattern of tyrosine phosphorylation and dephosphorylation of residual cellular proteins in permeabilized CHO/HIRc cells by Western blot analysis. In addition to the 95-kDa receptor beta-subunit, we detected the phosphorylation of two glycoproteins which included the commonly found 120-kDa protein and a novel 195-kDa protein whose dephosphorylation rate is slower than that of receptor beta-subunit.(ABSTRACT TRUNCATED AT 250 WORDS)
我们使用经洋地黄皂苷通透处理的、转染了完整人胰岛素受体的中国仓鼠卵巢(CHO)细胞(CHO/HIRc细胞),采用脉冲追踪技术检测胰岛素受体的磷酸化和去磷酸化情况。胰岛素激活受体酪氨酸残基的自身磷酸化,使其水平比基础水平高出数倍,分别在34、18和6摄氏度刺激2、5和10分钟后达到最高水平。磷酸肽分析显示,胰岛素受体1146激酶结构域的三重磷酸化形式是主要形式,这是完全激活的酪氨酸激酶功能的特征。去磷酸化反应具有时间和温度依赖性,在18和6摄氏度时的t1/2值分别为0.67和2分钟。钒酸盐完全抑制去磷酸化。与CHO/HIRc细胞相比,在类似的通透条件下,用胰岛素刺激的CHO/δCT细胞(过表达受体C末端缺失43个氨基酸的突变形式的CHO细胞),其受体自身磷酸化水平和对合成肽底物的酪氨酸激酶活性增加更大;CHO/δCT受体去磷酸化速率未降低。通透处理后细胞幽灵中几乎完全不存在胰岛素受体底物1(IRS-1)。因此,我们通过蛋白质印迹分析检测了通透处理的CHO/HIRc细胞中残留细胞蛋白的酪氨酸磷酸化和去磷酸化模式。除了95 kDa的受体β亚基外,我们还检测到两种糖蛋白的磷酸化,其中包括常见的120 kDa蛋白和一种新的195 kDa蛋白,其去磷酸化速率比受体β亚基慢。(摘要截短至250字)