Suppr超能文献

酶催化反应进程曲线分析:在不稳定酶、偶联反应及瞬态动力学中的应用

Analysis of progress curves for enzyme-catalyzed reactions: application to unstable enzymes, coupled reactions and transient-state kinetics.

作者信息

Duggleby R G

机构信息

Department of Biochemistry, University of Queensland, Brisbane, Australia.

出版信息

Biochim Biophys Acta. 1994 Apr 13;1205(2):268-74. doi: 10.1016/0167-4838(94)90244-5.

Abstract

There are several advantages to the use of progress curves to analyze the the kinetic properties of enzymes but most studies still rely on rate measurements. One of the reasons for this may be that progress curve analysis relies on the enzyme and the reactants being completely stable under assay conditions. Here a method is described that relaxes this requirement and allows progress curve analysis to be applied to unstable enzymes. The procedure is based on a combination of numerical integration and non-linear regression to fit rate equations to the progress curve data. The analysis is verified using simulated data and illustrated by application to the reaction catalyzed by alkaline phosphatase, measured in the presence of 10 mM EGTA where it has a half-life of 3 1/2 min. The method may also be applied to other experimental systems where the development over time reveals important properties but where an analytical solution of the underlying model is not known. This extension is illustrated by two systems: the coupled reactions catalyzed by pyruvate kinase and lactate dehydrogenase under conditions where both enzymes have similar activity; and the transient-state kinetics of the reaction catalyzed by glutamate dehydrogenase.

摘要

使用进程曲线来分析酶的动力学特性有几个优点,但大多数研究仍依赖于速率测量。造成这种情况的一个原因可能是进程曲线分析依赖于酶和反应物在测定条件下完全稳定。本文描述了一种方法,该方法放宽了这一要求,并允许将进程曲线分析应用于不稳定的酶。该程序基于数值积分和非线性回归的组合,以使速率方程拟合进程曲线数据。使用模拟数据验证了该分析,并通过应用于在10 mM乙二醇双乙醚二胺四乙酸(EGTA)存在下测量的碱性磷酸酶催化的反应进行了说明,在该条件下其半衰期为3.5分钟。该方法也可应用于其他实验系统,在这些系统中,随时间的发展揭示了重要特性,但基础模型的解析解未知。通过两个系统说明了这种扩展:在两种酶具有相似活性的条件下,丙酮酸激酶和乳酸脱氢酶催化的偶联反应;以及谷氨酸脱氢酶催化的反应的瞬态动力学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验