Suppr超能文献

人类监督学习与分类的概率分析

Probabilistic analysis of human supervised learning and classification.

作者信息

Rentschler I, Jüttner M, Caelli T

机构信息

Institute of Medical Psychology, University of Munich, Germany.

出版信息

Vision Res. 1994 Mar;34(5):669-87. doi: 10.1016/0042-6989(94)90021-3.

Abstract

Probabilistic classification techniques based on Bayesian decision theory are used to analyze human supervised learning and classification. The procedure rests on the assumption that human classification behaviour is based on internal feature states which can be linked to physical feature vectors (corresponding to the system input). In the present approach, this relationship is modeled in terms of additive stochastic error signals. The corresponding random variables describe the additional degrees of bias and variance introduced by the (perceptual) process of internal feature measurement. Estimates of internal feature states are obtained by least-squares minimization. Structure and dimensionality of the resulting internal representation are displayed by plotting the configuration of internal class means, or virtual prototypes. Their temporal evolution reflects the dynamic properties of the learning process. The use of the procedure is demonstrated by analyzing the results of two experiments. First, it is shown that Minimum Distance Classifiers, such as used by Caelli, Rentschler and Scheidler [(1987) Biological Cybernetics, 57, 233-240], are suboptimal in predicting human performance. Second, it is found that extrafoveal learning is much slower than foveal learning and that extrafoveal pattern representations are severely distorted. The latter distortions reveal the existence of limitations for the generalization of supervised learning over space.

摘要

基于贝叶斯决策理论的概率分类技术被用于分析人类的监督学习和分类。该过程基于这样一种假设,即人类分类行为是基于内部特征状态,这些状态可以与物理特征向量(对应于系统输入)相联系。在当前方法中,这种关系是根据加性随机误差信号来建模的。相应的随机变量描述了由内部特征测量(感知)过程引入的额外偏差和方差程度。通过最小二乘法最小化获得内部特征状态的估计值。通过绘制内部类均值或虚拟原型的配置来展示所得内部表示的结构和维度。它们的时间演变反映了学习过程的动态特性。通过分析两个实验的结果来演示该过程的使用。首先,结果表明,如Caelli、Rentschler和Scheidler [(1987) Biological Cybernetics, 57, 233 - 240]所使用的最小距离分类器在预测人类表现方面是次优的。其次,发现中央凹外学习比中央凹学习慢得多,并且中央凹外模式表示严重扭曲。后者的扭曲揭示了监督学习在空间上泛化存在局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验