Suppr超能文献

QUEST阈值方法的高效且无偏倚修正:理论、模拟、实验评估及实际应用

Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation.

作者信息

King-Smith P E, Grigsby S S, Vingrys A J, Benes S C, Supowit A

机构信息

College of Optometry, Ohio State University, Columbus 43210-1240.

出版信息

Vision Res. 1994 Apr;34(7):885-912. doi: 10.1016/0042-6989(94)90039-6.

Abstract

QUEST [Watson and Pelli, Perception and Psychophysics, 13, 113-120 (1983)] is an efficient method of measuring thresholds which is based on three steps: (1) Specification of prior knowledge and assumptions, including an initial probability density function (p.d.f.) of threshold (i.e. relative probability of different thresholds in the population). (2) A method for choosing the stimulus intensity of any trial. (3) A method for choosing the final threshold estimate. QUEST introduced a Bayesian framework for combining prior knowledge with the results of previous trials to calculate a current p.d.f.; this is then used to implement Steps 2 and 3. While maintaining this Bayesian approach, this paper evaluates whether modifications of the QUEST method (particularly Step 2, but also Steps 1 and 3) can lead to greater precision and reduced bias. Four variations of the QUEST method (differing in Step 2) were evaluated by computer simulations. In addition to the standard method of setting the stimulus intensity to the mode of the current p.d.f. of threshold, the alternatives of using the mean and the median were evaluated. In the fourth variation--the Minimum Variance Method--the next stimulus intensity is chosen to minimize the expected variance at the end of the next trial. An exact enumeration technique with up to 20 trials was used for both yes-no and two-alternative forced-choice (2AFC) experiments. In all cases, using the mean (here called ZEST) provided better precision than using the median which in turn was better than using the mode. The Minimum Variance Method provided slightly better precision than ZEST. The usual threshold criterion--based on the "ideal sweat factor"--may not provide optimum precision; efficiency can generally be improved by optimizing the threshold criterion. We therefore recommend either using ZEST with the optimum threshold criterion or the more complex Minimum Variance Method. A distinction is made between "measurement bias", which is derived from the mean of repeated threshold estimates for a single real threshold, and "interpretation bias", which is derived from the mean of real thresholds yielding a single threshold estimate. If their assumptions are correct, the current methods have no interpretation bias, but they do have measurement bias. Interpretation bias caused by errors in the assumptions used by ZEST is evaluated. The precisions and merits of yes-no and 2AFC techniques are compared.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

QUEST方法[沃森和佩利,《知觉与心理物理学》,第13卷,第113 - 120页(1983年)]是一种高效的测量阈值的方法,它基于三个步骤:(1)指定先验知识和假设,包括阈值的初始概率密度函数(p.d.f.)(即总体中不同阈值的相对概率)。(2)一种选择任何试验刺激强度的方法。(3)一种选择最终阈值估计值的方法。QUEST引入了一个贝叶斯框架,用于将先验知识与先前试验的结果相结合,以计算当前的概率密度函数;然后用它来实施步骤2和3。在保持这种贝叶斯方法的同时,本文评估了QUEST方法的修改(特别是步骤2,但也包括步骤1和3)是否能带来更高的精度和更低的偏差。通过计算机模拟评估了QUEST方法的四种变体(在步骤2上有所不同)。除了将刺激强度设置为当前阈值概率密度函数的众数的标准方法外,还评估了使用均值和中位数的替代方法。在第四种变体——最小方差法中,选择下一个刺激强度以最小化下一次试验结束时的预期方差。对于是/否和二项迫选(2AFC)实验,使用了一种最多进行20次试验的精确枚举技术。在所有情况下,使用均值(这里称为ZEST)比使用中位数具有更高的精度,而中位数又比使用众数更好。最小方差法比ZEST提供了略高的精度。基于“理想出汗因子”的通常阈值标准可能无法提供最佳精度;通过优化阈值标准,通常可以提高效率。因此,我们建议要么使用具有最佳阈值标准的ZEST,要么使用更复杂的最小方差法。区分了“测量偏差”和“解释偏差”,测量偏差来自对单个真实阈值的重复阈值估计的均值,解释偏差来自产生单个阈值估计的真实阈值的均值。如果其假设正确,当前方法没有解释偏差,但确实存在测量偏差。评估了由ZEST使用的假设中的误差引起的解释偏差。比较了是/否和2AFC技术的精度和优点。(摘要截断于400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验