Suppr超能文献

Molecular screening of the glucokinase gene in familial type 2 (non-insulin-dependent) diabetes mellitus.

作者信息

Elbein S C, Hoffman M, Qin H, Chiu K, Tanizawa Y, Permutt M A

机构信息

Division of Endocrinology and Metabolism, Veterans Affairs Medical Center, Salt Lake City, UT 84148.

出版信息

Diabetologia. 1994 Feb;37(2):182-7. doi: 10.1007/s001250050091.

Abstract

The glucokinase locus has been implicated by linkage studies in several Caucasian pedigrees with early onset, autosomal dominant diabetes, and mutations have been identified in a large number of these pedigrees. Although mutations have been reported in some pedigrees with late onset Type 2 (non-insulin-dependent) diabetes mellitus, linkage studies of typical familial Type 2 diabetes did not suggest a major role for this locus. Nonetheless, linkage studies were consistent with the hypothesis that mutations of the glucokinase gene were responsible for the pathogenesis of Type 2 diabetes in a minority of pedigrees or one gene in a polygenic disorder. To systematically address this hypothesis, we examined 60 diabetic members of 18 pedigrees ascertained for two or more Type 2 diabetic siblings and eight unrelated diabetic spouses. Initially, the coding regions from each of the 11 glucokinase exons were examined by the sensitive technique of single strand conformation polymorphism analysis to screen for single nucleotide substitutions. Subsequently, we also sequenced each exon from an affected member of the single pedigree in which a glucokinase allele was most likely to segregate with diabetes. Single strand conformation polymorphism analysis detected only three variants, none of which altered the amino acid sequence. No coding or splice site mutations were detected. Likewise, no additional mutations were detected upon direct sequence analysis. However, additional screening of promoter and 3' untranslated regions detected a variant pattern in the untranslated region of exon 10 which appeared to segregate with diabetes and impaired glucose tolerance in one pedigree.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验