Suppr超能文献

SOPM:一种用于蛋白质二级结构预测的自优化方法。

SOPM: a self-optimized method for protein secondary structure prediction.

作者信息

Geourjon C, Deléage G

机构信息

Institut de Biologie et de Chimie des Protéines, UPR 412-CNRS, Lyon, France.

出版信息

Protein Eng. 1994 Feb;7(2):157-64. doi: 10.1093/protein/7.2.157.

Abstract

A new method called the self-optimized prediction method (SOPM) has been developed to improve the success rate in the prediction of the secondary structure of proteins. This new method has been checked against an updated release of the Kabsch and Sander database, 'DATABASE.DSSP', comprising 239 protein chains. The first step of the SOPM is to build sub-databases of protein sequences and their known secondary structures drawn from 'DATABASE.DSSP' by (i) making binary comparisons of all protein sequences and (ii) taking into account the prediction of structural classes of proteins. The second step is to submit each protein of the sub-database to a secondary structure prediction using a predictive algorithm based on sequence similarity. The third step is to iteratively determine the predictive parameters that optimize the prediction quality on the whole sub-database. The last step is to apply the final parameters to the query sequence. This new method correctly predicts 69% of amino acids for a three-state description of the secondary structure (alpha helix, beta sheet and coil) in the whole database (46,011 amino acids). The correlation coefficients are C alpha = 0.54, C beta = 0.50 and Cc = 0.48. Root mean square deviations of 10% in the secondary structure content are obtained. Implications for the users are drawn so as to derive an accuracy at the amino acid level and provide the user with a guide for secondary structure prediction. The SOPM method is available by anonymous ftp to ibcp.fr.

摘要

一种名为自优化预测方法(SOPM)的新方法已被开发出来,以提高蛋白质二级结构预测的成功率。这种新方法已针对Kabsch和Sander数据库的更新版本“DATABASE.DSSP”进行了检验,该数据库包含239条蛋白质链。SOPM的第一步是通过(i)对所有蛋白质序列进行二元比较以及(ii)考虑蛋白质结构类别的预测,从“DATABASE.DSSP”中构建蛋白质序列及其已知二级结构的子数据库。第二步是使用基于序列相似性的预测算法,将子数据库中的每个蛋白质提交进行二级结构预测。第三步是迭代确定优化整个子数据库预测质量的预测参数。最后一步是将最终参数应用于查询序列。这种新方法在整个数据库(46,011个氨基酸)中对二级结构的三态描述(α螺旋、β折叠和卷曲)正确预测了69%的氨基酸。相关系数为Cα = 0.54、Cβ = 0.50和Cc = 0.48。在二级结构含量方面获得了10%的均方根偏差。得出了对用户的启示,以便在氨基酸水平上获得准确性,并为用户提供二级结构预测指南。SOPM方法可通过匿名ftp获取至ibcp.fr。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验