Embrey K J, Mehta A, Carrington S J, Jaouhari R, McKie J H, Douglas K T
Department of Pharmacy, University of Manchester, England.
Eur J Biochem. 1994 Apr 15;221(2):793-9. doi: 10.1111/j.1432-1033.1994.tb18793.x.
The analogue of glutathione disulphide (GSSG) in which the disulphide bridge of GSSG is replaced by -CH2-S- was synthesised from L-cystathionine using t-butoxycarbonyl and t-butyl ester protection with triethylsilane-promoted deprotection. This analogue (GCSG) was found to be a linear, competitive inhibitor of yeast glutathione reductase (Ki value 981 microM at pH 7.0), a very poor substrate and not to act as an irreversible inhibitor of glutathione reductase. The weak binding of GCSG to glutathione reductase permitted the use of transferred nuclear Overhauser effect spectroscopy (TRNOESY) to investigate the bound conformation of GCSG in its complex with glutathione reductase. The solution structure of free GCSG was investigated by NMR spectroscopy using a range of NMR techniques. The TRNOESY experiment allowed a range of conformations to be determined for the central bridge region (containing the -CH2-S- replacement) of GCSG bound to yeast glutathione reductase. Using the nuclear Overhauser effect constraints thus derived, in combination with molecular graphics and energy minimisation based on the known crystal coordinates of glutathione disulphide (GSSG) bound to human erythrocyte glutathione reductase, allowed an explanation of the lack of substrate activity of GCSG, its inactivity as a suicide inactivator and its relatively weak binding in terms of the enforced mislocation of the -CH2-S- bridge with respect to the catalytic residues (relative to GSSG). Thus, the simple replacement of -S- by -CH2-, common in medicinal chemistry, can lead to poor receptor binding if the replacement occurs in a central, rather than peripheral, part of the ligand under modification.
通过使用叔丁氧羰基和叔丁酯保护以及三乙基硅烷促进的脱保护反应,由L-胱硫醚合成了谷胱甘肽二硫化物(GSSG)的类似物,其中GSSG的二硫键被-CH₂-S-取代。发现该类似物(GCSG)是酵母谷胱甘肽还原酶的线性竞争性抑制剂(在pH 7.0时Ki值为981 μM),是一种非常差的底物,并且不是谷胱甘肽还原酶的不可逆抑制剂。GCSG与谷胱甘肽还原酶的弱结合使得可以使用转移核Overhauser效应光谱(TRNOESY)来研究GCSG与谷胱甘肽还原酶复合物中的结合构象。通过使用一系列核磁共振技术,通过核磁共振光谱研究了游离GCSG的溶液结构。TRNOESY实验确定了与酵母谷胱甘肽还原酶结合的GCSG中心桥区域(包含-CH₂-S-取代基)的一系列构象。利用由此得到的核Overhauser效应约束,结合分子图形以及基于与人类红细胞谷胱甘肽还原酶结合的谷胱甘肽二硫化物(GSSG)的已知晶体坐标进行的能量最小化,就-CH₂-S-桥相对于催化残基(相对于GSSG)的强制错位而言,解释了GCSG缺乏底物活性、其作为自杀性灭活剂的无活性以及其相对较弱的结合。因此,在药物化学中常见的用-CH₂-简单取代-S-,如果取代发生在被修饰配体的中心而非外围部分,可能会导致受体结合不良。