Suppr超能文献

源自详细动力学模型的肌醇三磷酸受体介导的[Ca2+]i振荡方程:一种类似霍奇金-赫胥黎的形式主义。

Equations for InsP3 receptor-mediated [Ca2+]i oscillations derived from a detailed kinetic model: a Hodgkin-Huxley like formalism.

作者信息

Li Y X, Rinzel J

机构信息

Mathematical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892.

出版信息

J Theor Biol. 1994 Feb 21;166(4):461-73. doi: 10.1006/jtbi.1994.1041.

Abstract

The nine-variable De Young-Keizer model (1992) for [Ca2+]i oscillations mediated by InsP3 receptor channels in endoplasmic reticulum (ER) membrane is analyzed and reduced to a two-variable system. The different time scales in the three basic channel gating processes, namely InsP3 regulation, Ca2+ activation, and Ca2+ inactivation, are revealed and characterized. The method of multiple scales is used in solving the equations on a succession of faster time scales and reducing them to a 2D system. The reduced system, (Vcy/fcy) dC/dt = -P1P3Rm3 infinity h3(C-C0)-PL(C-C0)-Jpump(C); dh/dt = (h infinity-h)/tau h, is analogous in form to the Hodgkin-Huxley equations for plasma membrane electrical excitability. [Ca2+]i dynamics in this model thus involve ER membrane-associated excitability. The reduced system has a bifurcation diagram almost identical to that of the original system and retains the most important dynamic features of the latter. The analysis also shows that the reduced system becomes simpler when the different gating processes are more independent from each other, i.e. when the rates for Ca2+ binding at the site associated with one gating process are independent of occupancy at the other two binding sites. Assuming further that binding of InsP3 does not depend on Ca2+ occupancy at the inactivation site, we obtain a "minimal" form yet retain significant ability to reproduce experimental observations.

摘要

对由内质网(ER)膜中肌醇三磷酸(InsP3)受体通道介导的[Ca2+]i振荡的九变量德扬 - 凯泽模型(1992)进行了分析,并简化为一个双变量系统。揭示并表征了三个基本通道门控过程中不同的时间尺度,即InsP3调节、Ca2+激活和Ca2+失活。多尺度方法用于在一系列更快的时间尺度上求解方程,并将其简化为二维系统。简化后的系统,(Vcy/fcy) dC/dt = -P1P3Rm3 infinity h3(C - C0) - PL(C - C0) - Jpump(C); dh/dt = (h infinity - h)/tau h,在形式上类似于用于质膜电兴奋性的霍奇金 - 赫胥黎方程。因此,该模型中的[Ca2+]i动力学涉及内质网膜相关的兴奋性。简化后的系统具有与原始系统几乎相同的分岔图,并保留了后者最重要的动态特征。分析还表明,当不同的门控过程彼此更独立时,即当与一个门控过程相关的位点上Ca2+结合的速率与其他两个结合位点的占有率无关时,简化后的系统会变得更简单。进一步假设InsP3的结合不依赖于失活位点上的Ca2+占有率,我们得到了一种“最小”形式,但仍保留了重现实验观察结果的显著能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验