Gao Shouwei, Zhu Ruixin, Qin Yu, Tang Wenyu, Zhou Hao
Shanghai University, Shanghai, China.
Cogn Neurodyn. 2025 Dec;19(1):14. doi: 10.1007/s11571-024-10199-6. Epub 2025 Jan 9.
Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network. The TSO method incorporates information from multiple time steps into the selection strategy of the Best Matching Unit (BMU) neurons. It enables the coupled BMUs to radiate the weight across the same layer of neurons, ultimately forming a hierarchical self-organizing topographic map of concern. Additionally, we simulate real neuronal dynamics, introduce a glial cell-mediated Glial-LIF (Leaky Integrate-and-fire) model, and adjust multiple levels of BMUs to optimize the attention topological map.Experiments demonstrate that the proposed Self-organizing Glial Spiking Neural Network (SG-SNN) can generate attention topographies for dynamic event data from coarse to fine. A heuristic method based on cognitive science effectively guides the network's distribution of excitatory regions. Furthermore, the SG-SNN shows improved accuracy on three standard neuromorphic datasets: DVS128-Gesture, CIFAR10-DVS, and N-Caltech 101, with accuracy improvements of 0.3%, 2.4%, and 0.54% respectively. Notably, the recognition accuracy on the DVS128-Gesture dataset reaches 99.3%, achieving state-of-the-art (SOTA) performance.
神经动力学观察表明,大脑皮层通过自组织形成功能网络而进化。这些网络或区域的分布式集群,根据输入显示出不同程度的注意力图谱。传统上,网络自组织的研究主要依赖于静态数据,而忽略了动态神经形态数据中的时间信息。本文提出了一种使用脉冲神经网络进行神经形态数据处理的时间自组织(TSO)方法。TSO方法将多个时间步长的信息纳入最佳匹配单元(BMU)神经元的选择策略中。它使耦合的BMU能够在同一层神经元中辐射权重,最终形成一个关注的分层自组织地形图。此外,我们模拟了真实的神经元动力学,引入了一种胶质细胞介导的胶质-漏极积分发放(Glial-LIF)模型,并调整多个层次的BMU以优化注意力拓扑图。实验表明,所提出的自组织胶质脉冲神经网络(SG-SNN)可以为动态事件数据从粗到细地生成注意力地形图。一种基于认知科学的启发式方法有效地指导了网络兴奋性区域的分布。此外,SG-SNN在三个标准神经形态数据集上表现出更高的准确率:DVS128-手势、CIFAR10-DVS和N-Caltech 101,准确率分别提高了0.3%、2.4%和0.54%。值得注意的是,在DVS128-手势数据集上的识别准确率达到了99.3%,实现了当前最优(SOTA)性能。