Suppr超能文献

Sg-snn:一种基于时间信息的自组织脉冲神经网络。

Sg-snn: a self-organizing spiking neural network based on temporal information.

作者信息

Gao Shouwei, Zhu Ruixin, Qin Yu, Tang Wenyu, Zhou Hao

机构信息

Shanghai University, Shanghai, China.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):14. doi: 10.1007/s11571-024-10199-6. Epub 2025 Jan 9.

Abstract

Neurodynamic observations indicate that the cerebral cortex evolved by self-organizing into functional networks, These networks, or distributed clusters of regions, display various degrees of attention maps based on input. Traditionally, the study of network self-organization relies predominantly on static data, overlooking temporal information in dynamic neuromorphic data. This paper proposes Temporal Self-Organizing (TSO) method for neuromorphic data processing using a spiking neural network. The TSO method incorporates information from multiple time steps into the selection strategy of the Best Matching Unit (BMU) neurons. It enables the coupled BMUs to radiate the weight across the same layer of neurons, ultimately forming a hierarchical self-organizing topographic map of concern. Additionally, we simulate real neuronal dynamics, introduce a glial cell-mediated Glial-LIF (Leaky Integrate-and-fire) model, and adjust multiple levels of BMUs to optimize the attention topological map.Experiments demonstrate that the proposed Self-organizing Glial Spiking Neural Network (SG-SNN) can generate attention topographies for dynamic event data from coarse to fine. A heuristic method based on cognitive science effectively guides the network's distribution of excitatory regions. Furthermore, the SG-SNN shows improved accuracy on three standard neuromorphic datasets: DVS128-Gesture, CIFAR10-DVS, and N-Caltech 101, with accuracy improvements of 0.3%, 2.4%, and 0.54% respectively. Notably, the recognition accuracy on the DVS128-Gesture dataset reaches 99.3%, achieving state-of-the-art (SOTA) performance.

摘要

神经动力学观察表明,大脑皮层通过自组织形成功能网络而进化。这些网络或区域的分布式集群,根据输入显示出不同程度的注意力图谱。传统上,网络自组织的研究主要依赖于静态数据,而忽略了动态神经形态数据中的时间信息。本文提出了一种使用脉冲神经网络进行神经形态数据处理的时间自组织(TSO)方法。TSO方法将多个时间步长的信息纳入最佳匹配单元(BMU)神经元的选择策略中。它使耦合的BMU能够在同一层神经元中辐射权重,最终形成一个关注的分层自组织地形图。此外,我们模拟了真实的神经元动力学,引入了一种胶质细胞介导的胶质-漏极积分发放(Glial-LIF)模型,并调整多个层次的BMU以优化注意力拓扑图。实验表明,所提出的自组织胶质脉冲神经网络(SG-SNN)可以为动态事件数据从粗到细地生成注意力地形图。一种基于认知科学的启发式方法有效地指导了网络兴奋性区域的分布。此外,SG-SNN在三个标准神经形态数据集上表现出更高的准确率:DVS128-手势、CIFAR10-DVS和N-Caltech 101,准确率分别提高了0.3%、2.4%和0.54%。值得注意的是,在DVS128-手势数据集上的识别准确率达到了99.3%,实现了当前最优(SOTA)性能。

相似文献

本文引用的文献

4
TCJA-SNN: Temporal-Channel Joint Attention for Spiking Neural Networks.TCJA-SNN:脉冲神经网络的时间-通道联合注意力机制
IEEE Trans Neural Netw Learn Syst. 2025 Mar;36(3):5112-5125. doi: 10.1109/TNNLS.2024.3377717. Epub 2025 Feb 28.
7
Analysis of Network Models with Neuron-Astrocyte Interactions.神经元-星形胶质细胞相互作用的网络模型分析。
Neuroinformatics. 2023 Apr;21(2):375-406. doi: 10.1007/s12021-023-09622-w. Epub 2023 Mar 23.
9
Control of noise-induced coherent oscillations in three-neuron motifs.三神经元基序中噪声诱导的相干振荡的控制
Cogn Neurodyn. 2022 Aug;16(4):941-960. doi: 10.1007/s11571-021-09770-2. Epub 2021 Dec 23.
10
A Survey on Vision Transformer.视觉Transformer综述
IEEE Trans Pattern Anal Mach Intell. 2023 Jan;45(1):87-110. doi: 10.1109/TPAMI.2022.3152247. Epub 2022 Dec 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验