Suppr超能文献

Mechanistic studies on human platelet isoprenylated protein methyltransferase: farnesylcysteine analogs block platelet aggregation without inhibiting the methyltransferase.

作者信息

Ma Y T, Shi Y Q, Lim Y H, McGrail S H, Ware J A, Rando R R

机构信息

Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115.

出版信息

Biochemistry. 1994 May 10;33(18):5414-20. doi: 10.1021/bi00184a009.

Abstract

The kinetic mechanism of the human platelet S-adenosyl-L-methionine (AdoMet)-linked isoprenylated protein methyltransferase was studied and determined to be ordered bibi. AdoMet binds first, and S-adenosyl-L-homocysteine (AdoHcy) departs last. Simple N-acetylated farnesylated cysteine analogs, such as N-acetyl-S-farnesyl-L-cysteine (AFC), are excellent substrates for the enzyme. Although many N-acetylated farnesylated cysteine analogs are excellent substrates for the enzyme, analogs with bulky moieties adjacent to the farnesylcysteine are neither substrates nor inhibitors of the enzyme. Two molecules of this class, N-benzoyl-S-farnesyl-L-cysteine (BzFC) and N-pivaloyl-S-farnesyl-L-cysteine (PFC) are useful in sorting out the putative physiological role of the methyltransferase in mediating human platelet aggregation because their pharmacological activities are unlinked to methyltransferase inhibition. When studied as inhibitors of platelet aggregation, the analogs are as active, or more active, than bona fide methyltransferase inhibitors of similar structure. Therefore, although it is possible that methyltransferase inhibitors, such as AFC, inhibit the enzyme when applied to cells, the observed pharmacological effects appear to be unrelated to this blockade. The new FC analogs described here have revealed a new signal transduction target which will be of some interest to explore.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验