Beyar R, Manor D, Sideman S
Heart System Research Center, Julius Silver Institute, Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa.
Adv Exp Med Biol. 1993;346:125-36. doi: 10.1007/978-1-4615-2946-0_12.
The interaction between cardiac mechanics and coronary flow is highlighted here. Left ventricular (LV) structure and geometry are related to coronary flow dynamics and used in the analysis of experimental coronary flow data. The important role of the collagen mesh in the generation of the intramyocardial pressure (IMP), the pressure in the interstitial fluid, at a wide range of loading conditions is emphasized. The calculated IMP, based on a structural model of the LV myocardium, can explain most of the observed coronary compression characteristics under a variety of loading and contractility conditions. A more general compression function, the extravascular compressive pressure (ECP), is suggested to define coronary compression and is presented here based on the dynamics of the coronary inflow under constant perfusion conditions. Coronary compression is shown to be affected by fluid transport and the bi-directional coupling of coronary hemodynamics and IMP dynamics.
本文着重探讨了心脏力学与冠状动脉血流之间的相互作用。左心室(LV)的结构和几何形状与冠状动脉血流动力学相关,并用于分析实验性冠状动脉血流数据。强调了胶原纤维网在广泛的负荷条件下产生心肌内压力(IMP)(即组织间液压力)中的重要作用。基于左心室心肌的结构模型计算得出的IMP,可以解释在各种负荷和收缩性条件下观察到的大多数冠状动脉压缩特征。本文提出了一种更通用的压缩函数——血管外压缩压力(ECP)来定义冠状动脉压缩,并基于恒定灌注条件下冠状动脉流入的动力学进行了阐述。研究表明,冠状动脉压缩受液体运输以及冠状动脉血流动力学与IMP动力学的双向耦合影响。