Suppr超能文献

Three-dimensional analysis of left ventricular ejection using computational fluid dynamics.

作者信息

Taylor T W, Okino H, Yamaguchi T

机构信息

Department of Bio-Medical Engineering, School of High-Technology for Human Welfare, Tokai University, Shizuoka, Japan.

出版信息

J Biomech Eng. 1994 Feb;116(1):127-30. doi: 10.1115/1.2895696.

Abstract

We present in this study a method for constructing computational fluid mechanical models in order to study the effects of time-varying left ventricular ejection. A spherical left ventricular model was implemented in which three dimensional flow fields were obtained. The time course of the ventricular wall changes were assumed to have a trigonometrically varying nature. The wall grid was reformed 25 times during the calculation since the left ventricular wall motion was assumed to follow the blood flow, and the ventricle wall radius was reduced by 60 percent in 0.25 seconds. Centerline and cross-sectional velocity vectors greatly increased in magnitude at the aortic outlet, and pressure dropped from 1.17 x 10(4) dynes/cm2 (8.8 mmHg) to zero in the top 10 percent of the heart. The modeling framework will be used with left ventricular cast data coordinates in future studies. There is presently a lack of three-dimensional data based on a realistic model, and the computational method should make it possible to compare simulation results with important measurement techniques such as echocardiography and magnetic resonance imaging.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验