Wright D J, Martinis S A, Jahn M, Söll D, Schimmel P
Department of Biology, Massachusetts Institute of Technology, Cambridge 02139.
Biochimie. 1993;75(12):1041-9. doi: 10.1016/0300-9084(93)90003-b.
The class I glutamine (Gln) tRNA synthetase interacts with the anticodon and acceptor stem of glutamine tRNA. RNA hairpin helices were designed to probe acceptor stem and anticodon stem-loop contacts. A seven-base pair RNA microhelix derived from the acceptor stem of tRNA(Gln) was aminoacylated by Gln tRNA synthetase. Variants of the glutamine acceptor stem microhelix implicated the discriminator base as a major identity element for glutaminylation of the RNA helix. A second RNA microhelix representing the anticodon stem-loop competitively inhibited tRNA(Gln) changing. However, the anticodon stem-loop microhelix did not enhance aminoacylation of the acceptor stem microhelix. Thus, transduction of the anticodon identity signal may require covalent continuity of the tRNA chain to trigger efficient aminoacylation.
I类谷氨酰胺(Gln)tRNA合成酶与谷氨酰胺tRNA的反密码子和受体茎相互作用。设计了RNA发夹螺旋来探测受体茎和反密码子茎环的接触。源自tRNA(Gln)受体茎的一个七碱基对RNA微螺旋被谷氨酰胺tRNA合成酶氨酰化。谷氨酰胺受体茎微螺旋的变体表明鉴别碱基是RNA螺旋谷氨酰化的主要识别元件。代表反密码子茎环的第二个RNA微螺旋竞争性抑制tRNA(Gln)的变化。然而,反密码子茎环微螺旋并没有增强受体茎微螺旋的氨酰化作用。因此,反密码子识别信号的转导可能需要tRNA链的共价连续性来触发有效的氨酰化作用。