Quinn C L, Tao N, Schimmel P
Cubist Pharmaceuticals, Inc., Cambridge, Massachusetts 02139, USA.
Biochemistry. 1995 Oct 3;34(39):12489-95. doi: 10.1021/bi00039a001.
We report here that tyrosyl-tRNA synthetase from the eukaryotic pathogen Pneumocystis carinii is a 370 amino acid polypeptide with characteristic elements of a class I aminoacyl-tRNA synthetase and aligns with the prokaryotic tyrosyl-tRNA synthetases in the class-defining active site region, including the tRNA acceptor helix-binding region. The expressed enzyme is a dimer that aminoacylates yeast tRNA but not Escherichia coli tRNA(Tyr). Like most tRNAs, prokaryotic tyrosine tRNAs have a G1.C72 base pair at the ends of their respective acceptor helices. However, the eukaryote cytoplasmic tyrosine tRNAs have an uncommon C1.G72 base pair. We show that P. carinii tyrosyl-tRNA synthetase charges a seven base pair hairpin microhelix (microhelixTyr) whose sequence is derived from the acceptor stem of yeast cytoplasmic tRNATyr. In contrast, the enzyme does not charge E. coli microhelixTyr. Changing the C1.G72 of yeast microhelixTyr to G1.C72 abolishes charging by the P. carinii tyrosyl-tRNA synthetase. Conversely, we found that E. coli tyrosyl-tRNA synthetase can charge an E. coli microhelixTyr and that charging is sensitive to having a G1.C72 rather than a C1.G72 base pair. The results demonstrate that the common structural framework of homologous tRNA synthetases has the capacity to coadapt to a transversion in a critical acceptor helix base pair and that this coadaptation can account for species-selective microhelix aminoacylation. We propose that species-selective acceptor helix recognition can be used as a conceptual basis for species-specific inhibitors of tRNA synthetases.
我们在此报告,来自真核病原体卡氏肺孢子虫的酪氨酰 - tRNA合成酶是一种由370个氨基酸组成的多肽,具有I类氨酰 - tRNA合成酶的特征元件,并且在包括tRNA受体螺旋结合区域在内的类定义活性位点区域与原核酪氨酰 - tRNA合成酶对齐。表达的酶是一种二聚体,可使酵母tRNA氨酰化,但不能使大肠杆菌tRNA(Tyr)氨酰化。与大多数tRNA一样,原核酪氨酸tRNA在其各自受体螺旋的末端具有G1.C72碱基对。然而,真核细胞质酪氨酸tRNA具有不常见的C1.G72碱基对。我们表明,卡氏肺孢子虫酪氨酰 - tRNA合成酶可使一个七碱基对的发夹微螺旋(微螺旋Tyr)氨酰化,其序列源自酵母细胞质tRNATyr的受体茎。相比之下,该酶不能使大肠杆菌微螺旋Tyr氨酰化。将酵母微螺旋Tyr的C1.G72变为G1.C72会消除卡氏肺孢子虫酪氨酰 - tRNA合成酶的氨酰化作用。相反,我们发现大肠杆菌酪氨酰 - tRNA合成酶可以使大肠杆菌微螺旋Tyr氨酰化,并且氨酰化对具有G1.C72而非C1.G72碱基对敏感。结果表明,同源tRNA合成酶的共同结构框架有能力共同适应关键受体螺旋碱基对中的颠换,并且这种共同适应可以解释物种选择性微螺旋氨酰化。我们提出,物种选择性受体螺旋识别可作为tRNA合成酶物种特异性抑制剂的概念基础。