Suppr超能文献

使用神经网络模式识别技术对多单元束内记录中的动作电位进行分类。

Classification of action potentials in multi-unit intrafascicular recordings using neural network pattern-recognition techniques.

作者信息

Mirfakhraei K, Horch K

出版信息

IEEE Trans Biomed Eng. 1994 Jan;41(1):89-91. doi: 10.1109/10.277276.

Abstract

Neural network pattern-recognition techniques were applied to the problem of identifying the sources of action potentials in multi-unit neural recordings made from intrafascicular electrodes implanted in cats. The network was a three-layer connectionist machine that used digitized action potentials as input. On average, the network was able to reliably separate 6 or 7 units per recording. As the number of units present in the recording increased beyond this limit, the number separable by the network remained roughly constant. The results demonstrate the utility of neural networks for classifying neural activity in multi-unit recordings.

摘要

神经网络模式识别技术被应用于识别植入猫体内的束内电极所记录的多单元神经活动中动作电位来源的问题。该网络是一个三层连接主义机器,它将数字化的动作电位作为输入。平均而言,该网络能够可靠地将每次记录中的6或7个单元分开。当记录中存在的单元数量超过这个限制时,网络能够分开的单元数量大致保持不变。结果证明了神经网络在多单元记录中对神经活动进行分类的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验