Suppr超能文献

随机效应概率单位回归模型的应用。

Application of random-effects probit regression models.

作者信息

Gibbons R D, Hedeker D

机构信息

Biometric Lab, University of Illinois at Chicago 60612.

出版信息

J Consult Clin Psychol. 1994 Apr;62(2):285-96. doi: 10.1037//0022-006x.62.2.285.

Abstract

A random-effects probit model is developed for the case in which the outcome of interest is a series of correlated binary responses. These responses can be obtained as the product of a longitudinal response process where an individual is repeatedly classified on a binary outcome variable (e.g., sick or well on occasion t), or in "multilevel" or "clustered" problems in which individuals within groups (e.g., firms, classes, families, or clinics) are considered to share characteristics that produce similar responses. Both examples produce potentially correlated binary responses and modeling these person- or cluster-specific effects is required. The general model permits analysis at both the level of the individual and cluster and at the level at which experimental manipulations are applied (e.g., treatment group). The model provides maximum likelihood estimates for time-varying and time-invariant covariates in the longitudinal case and covariates which vary at the level of the individual and at the cluster level for multilevel problems. A similar number of individuals within clusters or number of measurement occasions within individuals is not required. Empirical Bayesian estimates of person-specific trends or cluster-specific effects are provided. Models are illustrated with data from mental health research.

摘要

针对感兴趣的结果是一系列相关二元响应的情况,开发了一种随机效应概率单位模型。这些响应可以通过纵向响应过程的乘积获得,在纵向响应过程中,个体在二元结果变量上被重复分类(例如,在时刻t时生病或健康),或者在“多层次”或“聚类”问题中,组内个体(例如,公司、班级、家庭或诊所)被认为具有产生相似响应的共同特征。这两个例子都会产生潜在相关的二元响应,因此需要对这些个体或聚类特定效应进行建模。一般模型允许在个体和聚类层面以及应用实验操作的层面(例如,治疗组)进行分析。该模型为纵向情况下的时变和时不变协变量以及多层次问题中在个体层面和聚类层面变化的协变量提供最大似然估计。聚类内个体数量或个体内测量次数不需要相同。提供了个体特定趋势或聚类特定效应的经验贝叶斯估计。通过心理健康研究的数据对模型进行了说明。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验