Hedeker D, Gibbons R D
Division of Epidemiology and Biostatistics (M/C 922), School of Public Health and Prevention Research Center, University of Illinois at Chicago, IL 60612-7260, USA.
Comput Methods Programs Biomed. 1996 Mar;49(2):157-76. doi: 10.1016/0169-2607(96)01720-8.
MIXOR provides maximum marginal likelihood estimates for mixed-effects ordinal probit, logistic, and complementary log-log regression models. These models can be used for analysis of dichotomous and ordinal outcomes from either a clustered or longitudinal design. For clustered data, the mixed-effects model assumes that data within clusters are dependent. The degree of dependency is jointly estimated with the usual model parameters, thus adjusting for dependence resulting from clustering of the data. Similarly, for longitudinal data, the mixed-effects approach can allow for individual-varying intercepts and slopes across time, and can estimate the degree to which these time-related effects vary in the population of individuals. MIXOR uses marginal maximum likelihood estimation, utilizing a Fisher-scoring solution. For the scoring solution, the Cholesky factor of the random-effects variance-covariance matrix is estimated, along with the effects of model covariates. Examples illustrating usage and features of MIXOR are provided.
MIXOR为混合效应有序概率单位、逻辑斯蒂和互补对数-对数回归模型提供最大边际似然估计。这些模型可用于分析聚类设计或纵向设计中的二分和有序结果。对于聚类数据,混合效应模型假定聚类内的数据是相关的。相关程度与常用的模型参数一起联合估计,从而针对数据聚类产生的相关性进行调整。同样,对于纵向数据,混合效应方法可以考虑个体随时间变化的截距和斜率,并可以估计这些与时间相关的效应在个体总体中的变化程度。MIXOR使用边际最大似然估计,采用费舍尔评分法求解。对于评分求解,要估计随机效应方差-协方差矩阵的乔列斯基因子以及模型协变量的效应。文中提供了说明MIXOR用法和特征的示例。