Suppr超能文献

杂交群体中标记辅助选择的模拟

Simulation of marker assisted selection in hybrid populations.

作者信息

Gimelfarb A, Lande R

机构信息

Department of Biology, University of Oregon, Eugene 97403.

出版信息

Genet Res. 1994 Feb;63(1):39-47. doi: 10.1017/s0016672300032067.

Abstract

A computer model is developed that simulates Marker Assisted Selection (MAS) in a population produced by a cross between two inbred lines. Selection is based on an index that incorporates both phenotypic and molecular information. Molecular markers contributing to the index and their relative weights are determined by multiple regression of individual phenotype on the markers. The model is applied to investigate the efficiency of MAS as affected by several factors including total number of markers in the genome, number of markers contributing to the index, population size and heritability of the character. It is demonstrated that selection based on genetic markers can effectively utilize the linkage disequilibrium between genetic markers and QTLs created by crossing inbred lines. Selection is more efficient if markers contributing to the index are re-evaluated each generation than if they are evaluated only once. Increasing the total number of markers in the genome as well as the number of markers contributing to the index does not necessarily result in a higher efficiency of selection. Moreover, too many markers may result in a weaker response to selection. Population size is shown to be the most important factor affecting the efficiency of MAS.

摘要

开发了一种计算机模型,该模型模拟了两个自交系杂交产生的群体中的标记辅助选择(MAS)。选择基于一个综合了表型和分子信息的指数。对该指数有贡献的分子标记及其相对权重通过个体表型对标记的多元回归来确定。该模型用于研究MAS的效率受多个因素的影响,这些因素包括基因组中标记的总数、对指数有贡献的标记数量、群体大小和性状的遗传力。结果表明,基于遗传标记的选择可以有效利用自交系杂交产生的遗传标记与数量性状位点(QTL)之间的连锁不平衡。如果对每一代对指数有贡献的标记进行重新评估,选择会比只评估一次更有效。增加基因组中标记的总数以及对指数有贡献的标记数量并不一定会导致更高的选择效率。此外,过多的标记可能导致对选择的反应较弱。群体大小被证明是影响MAS效率的最重要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验