Department of Mathematics and Statistics, University of Helsinki, PO Box 68, 00014, Helsinki, Finland.
Theor Appl Genet. 2012 Nov;125(7):1575-87. doi: 10.1007/s00122-012-1936-1. Epub 2012 Jul 24.
Virtually all existing expectation-maximization (EM) algorithms for quantitative trait locus (QTL) mapping overlook the covariance structure of genetic effects, even though this information can help enhance the robustness of model-based inferences.
Here, we propose fast EM and pseudo-EM-based procedures for Bayesian shrinkage analysis of QTLs, designed to accommodate the posterior covariance structure of genetic effects through a block-updating scheme. That is, updating all genetic effects simultaneously through many cycles of iterations.
Simulation results based on computer-generated and real-world marker data demonstrated the ability of our method to swiftly produce sensible results regarding the phenotype-to-genotype association. Our new method provides a robust and remarkably fast alternative to full Bayesian estimation in high-dimensional models where the computational burden associated with Markov chain Monte Carlo simulation is often unwieldy. The R code used to fit the model to the data is provided in the online supplementary material.
几乎所有现有的用于数量性状基因座(QTL)作图的期望最大化(EM)算法都忽略了遗传效应的协方差结构,尽管这些信息有助于增强基于模型推断的稳健性。
在这里,我们提出了基于快速 EM 和伪 EM 的 QTL 贝叶斯收缩分析程序,旨在通过分块更新方案来适应遗传效应的后验协方差结构。也就是说,通过多次迭代循环同时更新所有遗传效应。
基于计算机生成和真实标记数据的模拟结果表明,我们的方法能够快速有效地产生与表型与基因型关联相关的结果。在与马尔可夫链蒙特卡罗模拟相关的计算负担通常难以处理的高维模型中,我们的新方法为全贝叶斯估计提供了一种稳健且快速的替代方法。用于拟合数据的 R 代码在在线补充材料中提供。