Suppr超能文献

来自Jun和Fos的两对带相反电荷的氨基酸赋予GCN4亮氨酸拉链异源二聚化能力。

Two pairs of oppositely charged amino acids from Jun and Fos confer heterodimerization to GCN4 leucine zipper.

作者信息

John M, Briand J P, Granger-Schnarr M, Schnarr M

机构信息

Institut de Biologie Moléculaire et Cellulaire du CNRS, UPR 9002, Strasbourg, France.

出版信息

J Biol Chem. 1994 Jun 10;269(23):16247-53.

PMID:8206929
Abstract

The preferential assembly of Jun and Fos into heterodimers has been shown to be mainly driven by 16 amino acids (8 from each protein) situated in positions e and g of the leucine zipper coiled-coil structures of the two proteins (O'Shea, E. K., Rutkowski, R., and Kim, P. S. (1992) Cell 68, 699-708). Using a similar approach, we show that among these residues two pairs of oppositely charged amino acids account in fact for most of the additional free energy of heterodimerization in this system. These residues are 2 glutamic acid side chains in positions g1 and e2 of the Fos leucine zipper and 2 lysine residues in the equivalent positions of the Jun zipper. These amino acids were placed in the context of a GCN4 leucine zipper using peptide synthesis. These peptides contain unique cysteine residues enabling the formation of covalent dimers. The gain in heterodimer free energy has been determined both by cysteine-linked dimer formation under redox conditions and by thermal melting experiments of covalent dimers using circular dichroism experiments. The two pairs of oppositely charged residues (Glu,Glu and Lys,Lys) in positions g1 and e2 contribute at least -1.9 kcal/mol of additional free energy, accounting for a 50-fold excess of the heterodimer with respect to one of the homodimers. Thermal denaturation studies as a function of pH and ionic strength suggest that electrostatic effects should indeed be a major driving force for heterodimerization. On the contrary, peptides harboring the 12 amino acids from Jun and Fos in the other e and g positions (i.e. in e1, g2, e3, g3, e4, and g4) show only a moderate tendency to form heterodimers.

摘要

Jun和Fos优先组装成异源二聚体,这主要是由位于两种蛋白质亮氨酸拉链卷曲螺旋结构的e和g位置的16个氨基酸(每种蛋白质8个)驱动的(奥谢,E.K.,鲁特科夫斯基,R.,和金,P.S.(1992年)《细胞》68卷,699 - 708页)。使用类似的方法,我们表明在这些残基中,两对带相反电荷的氨基酸实际上构成了该系统中异源二聚化额外自由能的大部分。这些残基是Fos亮氨酸拉链g1和e2位置的2个谷氨酸侧链以及Jun拉链等效位置的2个赖氨酸残基。利用肽合成将这些氨基酸置于GCN4亮氨酸拉链的背景下。这些肽含有独特的半胱氨酸残基,能够形成共价二聚体。通过氧化还原条件下形成的半胱氨酸连接二聚体以及使用圆二色性实验对共价二聚体进行热熔化实验,确定了异源二聚体自由能的增加。g1和e2位置的两对带相反电荷的残基(Glu,Glu和Lys,Lys)贡献了至少 - 1.9千卡/摩尔的额外自由能,使得异源二聚体相对于其中一种同源二聚体过量50倍。作为pH和离子强度函数的热变性研究表明,静电效应确实应该是异源二聚化的主要驱动力。相反,在其他e和g位置(即e1、g2、e3、g3、e4和g4)含有来自Jun和Fos的12个氨基酸的肽仅表现出适度的形成异源二聚体的倾向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验