Suppr超能文献

Distribution of a lanthanide (147 Pm) in vascular smooth muscle.

作者信息

Weiss G B, Goodman F R

出版信息

J Pharmacol Exp Ther. 1976 Aug;198(2):366-74.

PMID:820850
Abstract

In order to ascertain whether trivalent rare earth ions such as lanthanum (La+++) penetrate the cell membrane under physiological conditions, the extracellular and cellular distribution of promethium (147 Pm), a carrier-free rare earth radioisotope, was examined in rabbit aortic smooth muscle. As the duration of incubation was lengthened, uptake of 147Pm continued to increase; it was inhibited by La+++ and other rare earth ions (Nd+++, Lu+++) only when the 147 Pm/rare earth concentration ratio exceeded 1:10(6). However, equally high concentrations of Ca++ had no effect on 147Pm uptake. Efflux of 147Pm was only transiently increased by 1.5 mM La+++, and exposure to 0.05 mM EDTA elicited an increased 147Pm efflux with both transient and maintained components. The magnitude of the EDTA-induced increase in 147 Pm efflux was similar over a 30-fold range of EDTA concentration (0.05-1.5 mM); the limiting factor for 147Pm efflux is the rate of 147Pm desorption from the tissue rather than the extracellular concentration of EDTA. Loss of 147Pm in the presence of 0.05 mM EDTA could be described in terms of two specific washout components (the more rapid of which included 147Pm within the extracellular space and the slower of which had half-times of washout of approximately 7-10 minutes). Uptake of 147Pm was inhibited by lowering the incubation solution temperature to 0 degrees C or by procaine. However, concentrations of metabolic inhibitors (iodoacetate and dinitrophenol) which diminish loss of Ca++ from the cell did not decrease either the uptake or efflux of 147Pm. Thus, significant quantities of 147Pm do not appear to be accumulated within the cell or transported out of the cell; distribution of 147Pm can be most simply described in terms of a binding at and desorption from surface acessible fiber sites.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验