Suppr超能文献

描述无家可归的精神病患者:聚类分析结果。

Describing the homeless mentally ill: cluster analysis results.

作者信息

Mowbray C T, Bybee D, Cohen E

机构信息

Wayne State University, School of Social Work, Detroit, Michigan 48202.

出版信息

Am J Community Psychol. 1993 Feb;21(1):67-93. doi: 10.1007/BF00938208.

Abstract

Presented descriptive data on a group of homeless, mentally ill individuals (N = 108) served by a two-site demonstration project, funded by NIMH. Comparing results with those from other studies of this population produced some differences and some similarities. Cluster analysis techniques were applied to the data, producing a 4-group solution. Data validating the cluster solution are presented. It is suggested that the cluster results provide a more meaningful and useful method of understanding the descriptive data. Results suggest that while the population of individuals served as homeless and mentally ill is quite heterogeneous, many have well-developed functioning skills--only one cluster, making up 35.2% of the sample, fits the stereotype of the aggressive, psychotic individual with skill deficits in many areas. Further discussion is presented concerning the implications of the cluster analysis results for demonstrating contextual effects and thus better interpreting research results from other studies and assisting in future services planning.

摘要

本文呈现了由美国国立精神卫生研究所(NIMH)资助的一个双地点示范项目所服务的一组无家可归的精神病患者(N = 108)的描述性数据。将结果与该人群的其他研究结果相比较,发现了一些差异和一些相似之处。运用聚类分析技术对数据进行分析,得出了一个四组分类结果。文中展示了验证聚类结果的数据。研究表明,聚类结果为理解描述性数据提供了一种更有意义且有用的方法。结果表明,虽然作为无家可归的精神病患者群体具有相当大的异质性,但许多人具备良好发展的功能技能——只有一个占样本35.2%的聚类符合那种在许多方面技能欠缺的攻击性、精神病态个体的刻板印象。文中进一步讨论了聚类分析结果对于证明情境效应的意义,从而更好地解释其他研究的结果,并协助未来的服务规划。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验