Suppr超能文献

Ejecting deactivation does not affect O2 consumption-pressure-volume area relation in dog hearts.

作者信息

Kawaguchi O, Goto Y, Futaki S, Ohgoshi Y, Yaku H, Hata K, Takasago T, Saeki A, Suga H

机构信息

Department of Cardiovascular Dynamics, National Cardiovascular Center Research Institute, Osaka, Japan.

出版信息

Am J Physiol. 1993 Sep;265(3 Pt 2):H934-42. doi: 10.1152/ajpheart.1993.265.3.H934.

Abstract

We studied the effects of ejection velocity and resistive properties of the left ventricle (LV) on myocardial oxygen consumption (VO2) in 13 excised cross-circulated dog hearts. Increases in peak ejection velocity (-dV/dt) from 4.0 +/- 1.3 (SD) end-diastolic volume (EDV)/s to 12.7 +/- 5.3 EDV/s with constant EDV and end-systolic volume (velocity run) induced systolic pressure deficit. This decreased pressure-volume area (PVA; a measure of ventricular mechanical energy) and LV end-systolic elastance (Emax) by 47 +/- 14 and 38 +/- 15%, respectively. Unchanged maximum rate of left ventricular pressure rise and time-varying elastance during the isovolumic contraction period at the same EDV indicated that these contractions started with the same contractile state although the quicker ejection caused the greater deactivation. If the PVA deficit due to systolic pressure deficit is attributable to an internal energy-dissipating resistive element, VO2 in the velocity run will not as much decrease in proportion to PVA as in the isovolumic or slowly ejecting control run. However, the decreases in PVA due to increased -dV/dt decreased VO2 to the same extent as in the control run. This result negated the possibility that the pressure and PVA deficits would be caused by a mechanical energy-losing process. The same results were obtained whether or not Emax was decreased by quick ejection. We conclude that the pressure and PVA deficits and the proportionally decreased VO2 during quick ejection are mainly attributable to suppression of a ventricular mechanical energy generation process, but not of mechanical energy-losing process, by ejecting deactivation.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验