Suppr超能文献

Reductive activity of a manganese-dependent peroxidase from Phanerochaete chrysosporium.

作者信息

Chung N, Shah M M, Grover T A, Aust S D

机构信息

Utah State University Biotechnology Center, Logan 84322-4705.

出版信息

Arch Biochem Biophys. 1993 Oct;306(1):70-5. doi: 10.1006/abbi.1993.1482.

Abstract

A manganese-dependent peroxidase (MnP) from Phanerochaete chrysosporium catalyzed the reduction of cytochrome c in a reaction mixture containing H2O2, Mn(II)-tartrate, and p-hydroquinone. Electron spin resonance studies have shown that the hydroquinone-dependent reductive activity of MnP is due to the benzosemiquinone formed upon the one-electron oxidation of p-hydroquinone by Mn(III)-tartrate, which is formed upon the oxidation of Mn(II) by MnP. The reductive activity increased linearly with an increase in the concentration of p-hydroquinone. The reductive activity was also observed using other hydroquinones such as methylhydroquinone, 2,5-dimethylhydroquinone, and trimethylhydroquinone. The apparent Km values for Mn(II) and H2O2 for the hydroquinone-dependent reductive activity were similar to those for oxidative reactions of MnP. A stoichiometry study showed that about 1.5 mol of cytochrome c was reduced per mole of H2O2 consumed. The stoichiometry decreased with an increase in the concentration of H2O2. The optimal pH for the reductive activity was 5.0, approximately the physiological pH of the fungus. The reduction of cytochrome c was also observed using a quinone and cellobiose:quinone oxidoreductase isolated from the extracellular medium of the fungus.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验