Suppr超能文献

Reductive activity of a manganese-dependent peroxidase from Phanerochaete chrysosporium.

作者信息

Chung N, Shah M M, Grover T A, Aust S D

机构信息

Utah State University Biotechnology Center, Logan 84322-4705.

出版信息

Arch Biochem Biophys. 1993 Oct;306(1):70-5. doi: 10.1006/abbi.1993.1482.

Abstract

A manganese-dependent peroxidase (MnP) from Phanerochaete chrysosporium catalyzed the reduction of cytochrome c in a reaction mixture containing H2O2, Mn(II)-tartrate, and p-hydroquinone. Electron spin resonance studies have shown that the hydroquinone-dependent reductive activity of MnP is due to the benzosemiquinone formed upon the one-electron oxidation of p-hydroquinone by Mn(III)-tartrate, which is formed upon the oxidation of Mn(II) by MnP. The reductive activity increased linearly with an increase in the concentration of p-hydroquinone. The reductive activity was also observed using other hydroquinones such as methylhydroquinone, 2,5-dimethylhydroquinone, and trimethylhydroquinone. The apparent Km values for Mn(II) and H2O2 for the hydroquinone-dependent reductive activity were similar to those for oxidative reactions of MnP. A stoichiometry study showed that about 1.5 mol of cytochrome c was reduced per mole of H2O2 consumed. The stoichiometry decreased with an increase in the concentration of H2O2. The optimal pH for the reductive activity was 5.0, approximately the physiological pH of the fungus. The reduction of cytochrome c was also observed using a quinone and cellobiose:quinone oxidoreductase isolated from the extracellular medium of the fungus.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验