Suppr超能文献

脂质双层的弯曲刚度:IV. 红细胞形状变化的解释。

Bending stiffness of lipid bilayers: IV. Interpretation of red cell shape change.

作者信息

Fischer T M

机构信息

Institut für Physiologie, Medizinische Einrichtungen der Rheinisch-Westfälischen Technischen Hochschule Aachen, Germany.

出版信息

Biophys J. 1993 Aug;65(2):687-92. doi: 10.1016/S0006-3495(93)81107-X.

Abstract

Two mechanisms are operative when the resting shape of human red cells is changed into an echinocyte or a stomatocyte. The first (bilayer couple) is a differential change in the surface area of the two monolayers. It rests on the two-dimensional isotropic elasticity of the two monolayers and their fixed distance. The second (single layer) is a change in the average cone angle of the molecules comprising a monolayer. It rests on the intrinsic bending elasticity of each single layer. With a few exceptions the first mechanism has been quoted to interpret experimentally observed shape changes. To reconsider this preference two types of spontaneous curvatures (in bilayer couple bending and in single-layer bending) are defined. It is shown that (a) disregarding the single-layer mechanism is not justified and (b) there is too little basic information for quantitative interpretations of shape change.

摘要

当人类红细胞的静止形状转变为棘状细胞或口状细胞时,有两种机制在起作用。第一种(双层偶联)是两个单分子层表面积的差异变化。它基于两个单分子层的二维各向同性弹性及其固定距离。第二种(单层)是构成一个单分子层的分子平均锥角的变化。它基于每个单层的固有弯曲弹性。除了少数例外,第一种机制被引用来解释实验观察到的形状变化。为了重新考虑这种偏好,定义了两种类型的自发曲率(双层偶联弯曲和单层弯曲中的)。结果表明:(a)忽略单层机制是不合理的;(b)对于形状变化的定量解释,基本信息太少。

相似文献

1
Bending stiffness of lipid bilayers: IV. Interpretation of red cell shape change.
Biophys J. 1993 Aug;65(2):687-92. doi: 10.1016/S0006-3495(93)81107-X.
2
Bending stiffness of lipid bilayers. I. Bilayer couple or single-layer bending?
Biophys J. 1992 Nov;63(5):1328-35. doi: 10.1016/S0006-3495(92)81710-1.
3
Stomatocyte-discocyte-echinocyte sequence of the human red blood cell: evidence for the bilayer- couple hypothesis from membrane mechanics.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):16766-9. doi: 10.1073/pnas.202617299. Epub 2002 Dec 6.
4
Amphiphile induced echinocyte-spheroechinocyte transformation of red blood cell shape.
Eur Biophys J. 1998;27(4):335-9. doi: 10.1007/s002490050140.
5
Elastic energy of the discocyte-stomatocyte transformation.
Biochim Biophys Acta. 2014 Mar;1838(3):950-6. doi: 10.1016/j.bbamem.2013.10.020. Epub 2013 Nov 2.
6
Bending elasticity and bending fluctuations of lipid bilayer containing an additive.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 1):012901. doi: 10.1103/PhysRevE.67.012901. Epub 2003 Jan 28.
7
Elastic curvature constants of lipid monolayers and bilayers.
Chem Phys Lipids. 2006 Nov-Dec;144(2):146-59. doi: 10.1016/j.chemphyslip.2006.08.004. Epub 2006 Sep 6.
8
On the mechanism of stomatocyte-echinocyte transformations of red blood cells: experiment and theoretical model.
Colloids Surf B Biointerfaces. 2004 Mar 15;34(2):123-40. doi: 10.1016/j.colsurfb.2003.12.011.
9
The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cells.
Bioelectrochemistry. 2004 May;62(2):107-13. doi: 10.1016/j.bioelechem.2003.08.002.
10
Shape equations and curvature bifurcations induced by inhomogeneous rigidities in cell membranes.
J Biomech. 2005 Jul;38(7):1433-40. doi: 10.1016/j.jbiomech.2004.06.024. Epub 2004 Oct 5.

引用本文的文献

1
Biaxial Structures of Localized Deformations and Line-like Distortions in Effectively 2D Nematic Films.
Nanomaterials (Basel). 2024 Jan 23;14(3):246. doi: 10.3390/nano14030246.
2
A Review of Mechanics-Based Mesoscopic Membrane Remodeling Methods: Capturing Both the Physics and the Chemical Diversity.
J Membr Biol. 2022 Dec;255(6):757-777. doi: 10.1007/s00232-022-00268-4. Epub 2022 Oct 5.
3
Changes in erythrocyte morphology induced by imipramine and chlorpromazine.
J Physiol Biochem. 2006 Sep;62(3):199-205. doi: 10.1007/BF03168469.
5
6
Deformation and flow of red blood cells in a synthetic lattice: evidence for an active cytoskeleton.
Biophys J. 1995 Jun;68(6):2224-32. doi: 10.1016/S0006-3495(95)80443-1.

本文引用的文献

3
The stress-free shape of the red blood cell membrane.
Biophys J. 1981 Jun;34(3):409-22. doi: 10.1016/S0006-3495(81)84859-X.
4
Membrane bending energy in relation to bilayer couples concept of red blood cell shape transformations.
J Theor Biol. 1982 Jan 7;94(1):13-23. doi: 10.1016/0022-5193(82)90327-7.
5
Physical principles of membrane organization.
Q Rev Biophys. 1980 May;13(2):121-200. doi: 10.1017/s0033583500001645.
7
Biological membranes as bilayer couples. A molecular mechanism of drug-erythrocyte interactions.
Proc Natl Acad Sci U S A. 1974 Nov;71(11):4457-61. doi: 10.1073/pnas.71.11.4457.
8
Bending resistance and chemically induced moments in membrane bilayers.
Biophys J. 1974 Dec;14(12):923-31. doi: 10.1016/S0006-3495(74)85959-X.
9
Blocked lipid exchange in bilayers and its possible influence on the shape of vesicles.
Z Naturforsch C Biosci. 1974 Sep-Oct;29C(9-10):510-5. doi: 10.1515/znc-1974-9-1010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验