Fischer T M
Institut für Physiologie, Medizinische Fakultät, Rheinisch-Westfälische Technische Hochschule, Aachen, Germany.
Biophys J. 1992 Nov;63(5):1328-35. doi: 10.1016/S0006-3495(92)81710-1.
To describe the resistance of a bilayer to changes in curvature two mechanisms are distinguished which are termed bilayer couple bending and single-layer bending. In bilayer couple bending, the resistance arises from the 2-D isotropic elasticity of the two layers and their fixed distance. Single-layer bending covers the intrinsic bending stiffness of each monolayer. The two mechanisms are not independent. Even so, the distinction is useful since bilayer couple bending can relax by a slip between the layers from the local to the global fashion. Therefore, the bending stiffness of a bilayer depends on the time scale and on the extent of the deformation imposed on the membrane. Based on experimental data, it is shown by order of magnitude estimates that (a) the bending stiffness determined from thermally induced shape fluctuations of almost spherical vesicles is dominated by single-layer bending; (b) in the tether experiment on lipid vesicles and on red cells, a contribution of local bilayer couple bending can not be excluded; and (c) at the sharp corners at the leading and the trailing edge of tanktreading red cells, local bilayer couple bending appears to be important.
为了描述双层膜对曲率变化的阻力,区分了两种机制,分别称为双层耦合弯曲和单层弯曲。在双层耦合弯曲中,阻力源于两层的二维各向同性弹性及其固定距离。单层弯曲涵盖了每个单层的固有弯曲刚度。这两种机制并非相互独立。即便如此,这种区分仍是有用的,因为双层耦合弯曲可以通过层间的滑动从局部方式松弛到整体方式。因此,双层膜的弯曲刚度取决于时间尺度以及施加在膜上的变形程度。基于实验数据,通过量级估计表明:(a) 由几乎球形囊泡的热诱导形状波动确定的弯曲刚度主要由单层弯曲主导;(b) 在脂质囊泡和红细胞的系链实验中,不能排除局部双层耦合弯曲的贡献;(c) 在坦克履带式红细胞前缘和后缘的尖角处,局部双层耦合弯曲似乎很重要。