Suppr超能文献

Insulin reduces contraction and intracellular calcium concentration in vascular smooth muscle.

作者信息

Kahn A M, Seidel C L, Allen J C, O'Neil R G, Shelat H, Song T

机构信息

Department of Medicine, University of Texas Medical School, Houston.

出版信息

Hypertension. 1993 Nov;22(5):735-42. doi: 10.1161/01.hyp.22.5.735.

Abstract

Resistance to insulin-induced glucose disposal is associated with hypertension, in accord with recent reports that insulin-induced vasodilation is impaired in men with resistance to insulin-induced glucose disposal. Nevertheless, the mechanism of insulin-induced vasodilation is not known. We wished to determine whether a physiological concentration of insulin inhibits agonist-induced contraction at the level of the individual vascular smooth muscle cell, and if so, how. Dispersed vascular smooth muscle cells from dog femoral artery were grown on collagen gels for 4 to 8 days. Contraction and intracellular Ca2+ concentration of individual cells were measured by photomicroscopy and fura 2 epifluorescence microscopy, respectively. Serotonin and angiotensin II contracted cells in a dose-dependent manner. Preincubation of cells for 20 minutes (short-term) or 7 days (long-term) with insulin (40 microU/mL) inhibited serotonin- and angiotensin II-induced contractions by approximately 50%. Insulin (10 microU/mL) acutely inhibited serotonin-induced contraction by 34%. The maximal effect of high extracellular K(+)-induced contraction was not affected by short-term insulin exposure, but the ED50 for extracellular K(+)-induced contraction was increased from 7.6 +/- 2.5 to 16.0 +/- 3.9 mmol/L (P < .05). Short-term insulin exposure also attenuated the peak rise of the serotonin-induced intracellular Ca2+ transient and increased the rate constant for intracellular Ca2+ decline. Verapamil and ouabain completely blocked the attenuation of agonist-induced contraction by short-term insulin exposure, indicating the importance of voltage-operated Ca2+ channels and the Na(+)-K+ pump for this effect.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验