Chen-Cleland T A, Boffa L C, Carpaneto E M, Mariani M R, Valentin E, Mendez E, Allfrey V G
Laboratory of Cell Biology, Rockefeller University, New York, New York 10021.
J Biol Chem. 1993 Nov 5;268(31):23409-16.
The unfolding of nucleosomes along transcriptionally active DNA sequences uncovers previously shielded cysteinyl-thiol groups of histone H3 molecules located at the center of the nucleosome core. This change in conformation and SH reactivity of nucleosomes along transcribed DNA sequences makes it possible to separate active from inactive nucleosomes by mercury affinity chromatography. The binding of thiol-reactive nucleosomes to an organomercurial-agarose column has been shown previously to reflect, with accuracy, both the timing and extent of transcription of the associated DNA sequences (Chen, T. A., and Allfrey, V. G. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 5252-5256). Here, we extend this experimental approach to the analysis of higher order chromatin structures. Large chromatin fragments released by treating isolated nuclei with restriction endonucleases are fractionated on mercurated agarose magnetic beads that capture nucleosomes with accessible histone H3 thiols, but do not react with the hidden H3 thiols of the compactly beaded nucleosomes of inactive genes. The SH-reactive domains of c-myc and other genes are rapidly separated from the non-SH-reactive restriction fragments by the magnetic bead technique. The new method also overcomes a major limitation of mercurated agarose column chromatography, which is not suitable for studies of higher order chromatin structure because large chromatin fragments occlude the mercury column; occlusion is not a problem in magnetic separations using suspended mercurated agarose beads. Here, we describe the synthesis of mercurated agarose magnetic beads with high capacity for SH groups and test their application to the recovery of chromatin restriction fragments of c-myc and the growth arrest gene gas1.
核小体沿着转录活性DNA序列展开,会暴露出位于核小体核心中心的组蛋白H3分子先前被屏蔽的半胱氨酰硫醇基团。核小体沿着转录DNA序列的这种构象变化和SH反应性变化,使得通过汞亲和色谱法将活性核小体与非活性核小体分离成为可能。先前已表明,硫醇反应性核小体与有机汞琼脂糖柱的结合准确反映了相关DNA序列转录的时间和程度(Chen, T. A., and Allfrey, V. G. (1987) Proc. Natl. Acad. Sci. U. S. A. 84, 5252 - 5256)。在此,我们将这种实验方法扩展到高阶染色质结构的分析。用限制性内切酶处理分离的细胞核释放出的大染色质片段,在汞化琼脂糖磁珠上进行分级分离,这些磁珠捕获具有可及组蛋白H3硫醇的核小体,但不与非活性基因紧密珠状核小体中隐藏的H3硫醇发生反应。通过磁珠技术,c - myc和其他基因的SH反应性结构域能迅速与非SH反应性限制性片段分离。这种新方法还克服了汞化琼脂糖柱色谱法的一个主要局限性,即它不适合用于高阶染色质结构的研究,因为大的染色质片段会堵塞汞柱;而在使用悬浮汞化琼脂糖珠的磁分离中,堵塞问题并不存在。在此,我们描述了具有高SH基团结合能力的汞化琼脂糖磁珠的合成,并测试了它们在回收c - myc染色质限制性片段和生长停滞基因gas1方面的应用。