Suppr超能文献

大肠杆菌丝氨酰 - tRNA合成酶对离散tRNA(Ser)结构域氨酰化作用的贡献:使用模型RNA底物的动力学分析

Contributions of discrete tRNA(Ser) domains to aminoacylation by E.coli seryl-tRNA synthetase: a kinetic analysis using model RNA substrates.

作者信息

Sampson J R, Saks M E

机构信息

Division of Biology 147-75, California Institute of Technology, Pasadena 91125.

出版信息

Nucleic Acids Res. 1993 Sep 25;21(19):4467-75. doi: 10.1093/nar/21.19.4467.

Abstract

The aminoacylation kinetics of T7 transcripts representing defined regions of Escherichia coli serine tRNAs were determined using purified E.coli seryl-tRNA synthetase (SerRS) and the kinetic values were used to estimate the relative contribution of various tRNA(Ser) domains to recognition by SerRS. The analysis revealed that the extra stem/loop structure, characteristic of type II tRNAs such as tRNA(Ser), is the domain which makes the largest contribution to kcat/Km of aminoacylation. Moreover, Km of aminoacylation was increased by a factor of about 1000 when the extra stem/loop was changed to the consensus sequence of type I tRNA extra loops indicating that the stem structure contributes significantly to the binding of tRNA(Ser) to SerRS. A model RNA, which represents only the tRNA(Ser) coaxial acceptor-T psi C stem/loop domain, was also specifically aminoacylated by SerRS having a kcat/Km about 1000-fold greater than background levels. A significant portion of the contribution of this domain to aminoacylation is attributable to the acceptor stem sequence making the acceptor stem the second most important domain for recognition by SerRS. Finally, kcat/Km was essentially unchanged when the entire anticodon stem/loop of tRNA(Ser) was deleted indicating that neither the anticodon nucleotides nor the surrounding stem/loop structure are important for recognition by SerRS.

摘要

利用纯化的大肠杆菌丝氨酰 - tRNA合成酶(SerRS)测定了代表大肠杆菌丝氨酸tRNA特定区域的T7转录本的氨酰化动力学,并使用这些动力学值来估计各种tRNA(Ser)结构域对SerRS识别的相对贡献。分析表明,II型tRNA(如tRNA(Ser))特有的额外茎/环结构是对氨酰化的kcat/Km贡献最大的结构域。此外,当额外茎/环改变为I型tRNA额外环的共有序列时,氨酰化的Km增加了约1000倍,这表明茎结构对tRNA(Ser)与SerRS的结合有显著贡献。一个仅代表tRNA(Ser)同轴受体 - TψC茎/环结构域的模型RNA也被SerRS特异性氨酰化,其kcat/Km比背景水平高约1000倍。该结构域对氨酰化的显著部分贡献归因于受体茎序列,使受体茎成为SerRS识别的第二重要结构域。最后,当tRNA(Ser)的整个反密码子茎/环被删除时,kcat/Km基本不变,这表明反密码子核苷酸及其周围的茎/环结构对SerRS的识别都不重要。

相似文献

4
5
Insights into substrate promiscuity of human seryl-tRNA synthetase.
RNA. 2017 Nov;23(11):1685-1699. doi: 10.1261/rna.061069.117. Epub 2017 Aug 14.
7
Crystallographic and mutational studies of seryl-tRNA synthetase from the archaeon Pyrococcus horikoshii.
RNA Biol. 2008 Jul-Sep;5(3):169-77. doi: 10.4161/rna.5.3.6876. Epub 2008 Jul 28.
10
Yeast seryl-tRNA synthetase expressed in Escherichia coli recognizes bacterial serine-specific tRNAs in vivo.
Eur J Biochem. 1993 Jun 15;214(3):869-77. doi: 10.1111/j.1432-1033.1993.tb17990.x.

引用本文的文献

1
The tRNA identity landscape for aminoacylation and beyond.
Nucleic Acids Res. 2023 Feb 28;51(4):1528-1570. doi: 10.1093/nar/gkad007.
3
Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications.
Front Bioeng Biotechnol. 2022 Jul 1;10:918659. doi: 10.3389/fbioe.2022.918659. eCollection 2022.
4
Modulating Mistranslation Potential of tRNA in .
Genetics. 2019 Nov;213(3):849-863. doi: 10.1534/genetics.119.302525. Epub 2019 Sep 4.
5
Versatility of Synthetic tRNAs in Genetic Code Expansion.
Genes (Basel). 2018 Nov 7;9(11):537. doi: 10.3390/genes9110537.
6
Designing seryl-tRNA synthetase for improved serylation of selenocysteine tRNAs.
FEBS Lett. 2018 Nov;592(22):3759-3768. doi: 10.1002/1873-3468.13271. Epub 2018 Oct 24.
7
Challenges of site-specific selenocysteine incorporation into proteins by Escherichia coli.
RNA Biol. 2018;15(4-5):461-470. doi: 10.1080/15476286.2018.1440876. Epub 2018 Mar 12.
8
The emerging complexity of the tRNA world: mammalian tRNAs beyond protein synthesis.
Nat Rev Mol Cell Biol. 2018 Jan;19(1):45-58. doi: 10.1038/nrm.2017.77. Epub 2017 Sep 6.
9
Insights into substrate promiscuity of human seryl-tRNA synthetase.
RNA. 2017 Nov;23(11):1685-1699. doi: 10.1261/rna.061069.117. Epub 2017 Aug 14.
10
SerRS-tRNASec complex structures reveal mechanism of the first step in selenocysteine biosynthesis.
Nucleic Acids Res. 2015 Dec 2;43(21):10534-45. doi: 10.1093/nar/gkv996. Epub 2015 Oct 3.

本文引用的文献

1
Cloning and expression of the gene for bacteriophage T7 RNA polymerase.
Proc Natl Acad Sci U S A. 1984 Apr;81(7):2035-9. doi: 10.1073/pnas.81.7.2035.
3
The mechanism of action of yeast inorganic pyrophosphatase.
Methods Enzymol. 1982;87:526-48. doi: 10.1016/s0076-6879(82)87030-4.
5
6
Three-dimensional tertiary structure of yeast phenylalanine transfer RNA.
Science. 1974 Aug 2;185(4149):435-40. doi: 10.1126/science.185.4149.435.
7
Is there a discriminator site in transfer RNA?
Proc Natl Acad Sci U S A. 1972 Oct;69(10):3063-7. doi: 10.1073/pnas.69.10.3063.
9
Crystallographic refinement of yeast aspartic acid transfer RNA.
J Mol Biol. 1985 Jul 5;184(1):119-45. doi: 10.1016/0022-2836(85)90048-8.
10
Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates.
Nucleic Acids Res. 1987 Nov 11;15(21):8783-98. doi: 10.1093/nar/15.21.8783.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验