Suppr超能文献

检测噪声时间序列中的混沌现象。

Detecting chaos in a noisy time series.

作者信息

Wilson H B, Rand D A

机构信息

Nonlinear Systems Laboratory, University of Warwick, Coventry, U.K.

出版信息

Proc Biol Sci. 1993 Sep 22;253(1338):239-44. doi: 10.1098/rspb.1993.0109.

Abstract

We propose a new method for detecting low-dimensional chaotic time series when there is dynamical noise present. The method identifies the sign of the largest Liapunov exponent and thus the presence or absence of chaos. It also shows when it is possible to assign a value to the exponent. This approach can work for short time series of only 500 points. We analyse several real time series including chickenpox and measles data from New York City. For model systems it correctly identifies important spatial scales at which noise and nonlinear effects are important. We propose a further technique for estimating the level of noise in real time series if it is difficult to detect by the former method.

摘要

我们提出了一种新方法,用于在存在动态噪声的情况下检测低维混沌时间序列。该方法可识别最大李雅普诺夫指数的符号,进而确定混沌的存在与否。它还能表明何时可以为该指数赋值。这种方法适用于仅有500个点的短时间序列。我们分析了几个实时序列,包括来自纽约市的水痘和麻疹数据。对于模型系统,它能正确识别噪声和非线性效应重要的重要空间尺度。如果通过前一种方法难以检测,我们还提出了一种用于估计实时序列中噪声水平的进一步技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验