Suppr超能文献

Cell and oxygen flow in arterioles controlling capillary perfusion.

作者信息

Sarelius I H

机构信息

Department of Biophysics, School of Medicine and Dentistry, University of Rochester, New York 14642.

出版信息

Am J Physiol. 1993 Nov;265(5 Pt 2):H1682-7. doi: 10.1152/ajpheart.1993.265.5.H1682.

Abstract

Measurements of hemodynamic and oxygen transport characteristics in the arterioles that control capillary perfusion in striated muscle were used to compare oxygen flow into adjacent capillary networks. Observations were made in arterioles arising consecutively (branches 1-3 and the last branch) from a single transverse arteriole. During maximal dilation [after 5 min of exposure to superfusate with 10(-4) M adenosine (ADO)], mean cell flow into branches decreased significantly with increasing axial distance along the transverse arteriole, from 8.47 +/- 2.43 x 10(3) (SE) cells/s in branch 1 to 5.56 +/- 2.14 x 10(3), 3.21 +/- 1.30 x 10(3), and 4.00 +/- 1.33 x 10(3) cells/s in successive branches. During control, cell fluxes were not significantly different by position (2.21 +/- 1.12, 1.31 +/- 0.42, 0.97 +/- 0.31, and 1.23 +/- 0.40 cells/s in branches 1, 2, and 3 and the last branch, respectively). Branch diameters during ADO were not significantly different by position (26.2 +/- 2.9, 24.5 +/- 1.4, 22.0 +/- 2.8, and 26.7 +/- 2.7 microns, respectively). Hemoglobin saturations during ADO were not different (59.6 +/- 2.2, 60.6 +/- 2.3, 60.3 +/- 2.3, and 61.0 +/- 2.3%, respectively), whereas mean oxygen flow into branch 1 significantly exceeded that into branches 2 and 3 and the last branch (1.40 +/- 0.40 vs. 0.60 +/- 0.17, 0.53 +/- 0.22, and 0.66 +/- 0.22 pl/min, respectively). During control, oxygen flows were not significantly different between branches. Thus, both cell and oxygen flow into these arterioles vary in a systematic way dependent on their relative branch position; regulatory processes serve to make oxygen supply more uniform.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验