Kopecz K, Schöner G, Spengler F, Dinse H R
Institut für Neuroinformatik-ND 04, Universität Bochum, Germany.
Biol Cybern. 1993;69(5-6):463-73.
Experiments probed the dynamic properties of stimulus-evoked (approximately 10 Hz) oscillations in somatosensory cortex of anesthetized rats. Experimental paradigms and statistical time series analysis were based on theoretical ideas from a dynamic approach to temporal patterns of neuronal activity. From the results of a double-stimulus paradigm we conclude that the neuronal response contains two components with different dynamics and different coupling to the stimulus. Based on this result a quantitative dynamic model is derived, making use of normal form theory for bifurcating vector fields. The variables used are abstract, but measurable, dynamic components. The model parameters capture the dynamic properties of neuronal response and are related to experimental results. A structural interpretation of the model can be given in terms of the collective dynamics of neuronal groups, their mutual interaction, and their coupling to peripheral stimuli. The model predicts the stimulus-dependent lifetime of the oscillations as observed in experiment. We show that this prediction relies on the basic concept of dynamic bistability and does not depend on the modeling details.
实验探究了麻醉大鼠体感皮层中刺激诱发(约10赫兹)振荡的动态特性。实验范式和统计时间序列分析基于神经元活动时间模式动态方法的理论观点。从双刺激范式的结果中我们得出结论,神经元反应包含两个具有不同动态特性且与刺激有不同耦合的成分。基于这一结果,利用分岔向量场的范式理论推导了一个定量动态模型。所使用的变量是抽象但可测量的动态成分。模型参数捕捉了神经元反应的动态特性,并与实验结果相关。该模型可以根据神经元群体的集体动态、它们的相互作用以及它们与外周刺激的耦合给出一种结构解释。该模型预测了实验中观察到的振荡的刺激依赖性寿命。我们表明,这一预测依赖于动态双稳性的基本概念,而不依赖于建模细节。