Safaai Houman, Neves Ricardo, Eschenko Oxana, Logothetis Nikos K, Panzeri Stefano
Neural Computation Laboratory, Istituto Italiano di Tecnologia, 38068 Rovereto, Italy;
Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany;
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12834-9. doi: 10.1073/pnas.1516539112. Epub 2015 Sep 28.
Neuronal responses to sensory stimuli are not only driven by feedforward sensory pathways but also depend upon intrinsic factors (collectively known as the network state) that include ongoing spontaneous activity and neuromodulation. To understand how these factors together regulate cortical dynamics, we recorded simultaneously spontaneous and somatosensory-evoked multiunit activity from primary somatosensory cortex and from the locus coeruleus (LC) (the neuromodulatory nucleus releasing norepinephrine) in urethane-anesthetized rats. We found that bursts of ipsilateral-LC firing preceded by few tens of milliseconds increases of cortical excitability, and that the 1- to 10-Hz rhythmicity of LC discharge appeared to increase the power of delta-band (1-4 Hz) cortical synchronization. To investigate quantitatively how LC firing might causally influence spontaneous and stimulus-driven cortical dynamics, we then constructed and fitted to these data a model describing the dynamical interaction of stimulus drive, ongoing synchronized cortical activity, and noradrenergic neuromodulation. The model proposes a coupling between LC and cortex that can amplify delta-range cortical fluctuations, and shows how suitably timed phasic LC bursts can lead to enhanced cortical responses to weaker stimuli and increased temporal precision of cortical stimulus-evoked responses. Thus, the temporal structure of noradrenergic modulation may selectively and dynamically enhance or attenuate cortical responses to stimuli. Finally, using the model prediction of single-trial cortical stimulus-evoked responses to discount single-trial state-dependent variability increased by ∼70% the sensory information extracted from cortical responses. This suggests that downstream circuits may extract information more effectively after estimating the state of the circuit transmitting the sensory message.
神经元对感觉刺激的反应不仅由前馈感觉通路驱动,还取决于内在因素(统称为网络状态),这些因素包括持续的自发活动和神经调节。为了理解这些因素如何共同调节皮层动力学,我们在乌拉坦麻醉的大鼠中,同时记录了初级体感皮层和蓝斑(LC)(释放去甲肾上腺素的神经调节核)的自发和体感诱发的多单位活动。我们发现,同侧LC放电的爆发在皮层兴奋性增加几十毫秒之前出现,并且LC放电的1至10赫兹节律似乎增加了δ波段(1至4赫兹)皮层同步的功率。为了定量研究LC放电如何因果性地影响自发和刺激驱动的皮层动力学,我们构建并拟合了一个模型,该模型描述了刺激驱动、持续同步皮层活动和去甲肾上腺素能神经调节之间的动态相互作用。该模型提出了LC和皮层之间的耦合,这种耦合可以放大δ波段的皮层波动,并展示了适时的相位性LC爆发如何导致皮层对较弱刺激的反应增强以及皮层刺激诱发反应的时间精度提高。因此,去甲肾上腺素能调节的时间结构可能选择性地、动态地增强或减弱皮层对刺激的反应。最后,利用单次试验皮层刺激诱发反应的模型预测来消除单次试验状态依赖性变异性,从皮层反应中提取的感觉信息增加了约70%。这表明下游回路在估计传递感觉信息的回路状态后可能更有效地提取信息。