Suppr超能文献

Three-dimensional reconstruction of ventricular septal defects: validation studies and in vivo feasibility.

作者信息

Rivera J M, Siu S C, Handschumacher M D, Lethor J P, Guerrero J L, Vlahakes G J, Mitchell J D, Weyman A E, King M E, Levine R A

机构信息

Noninvasive Cardiac Laboratory, Massachusetts General Hospital, Boston 02114.

出版信息

J Am Coll Cardiol. 1994 Jan;23(1):201-8. doi: 10.1016/0735-1097(94)90521-5.

Abstract

OBJECTIVES

The purpose of this study was to demonstrate the feasibility of in vivo three-dimensional reconstruction of ventricular septal defects and to validate its quantitative accuracy for defect localization in excised hearts (used to permit comparison of three-dimensional and direct measurements without cardiac contraction).

BACKGROUND

Appreciating the three-dimensional spatial relations of ventricular septal defects could be useful in planning surgical and catheter approaches. Currently, however, echocardiography provides only two-dimensional views, requiring mental integration. A recently developed system automatically combines two-dimensional echocardiographic images with their spatial locations to produce a three-dimensional construct.

METHODS

Surgically created ventricular septal defects of varying size and location were imaged and reconstructed, along with the left and right ventricles, in the beating heart of six dogs to demonstrate the in vivo feasibility of producing a coherent image of the defect that portrays its relation to surrounding structures. Two additional gel-filled excised hearts with defects were completely reconstructed. Quantitative localization of the defects relative to other structures (ventricular apexes and valve insertions) was then validated for seven defects in excised hearts. The right septal margins of the exposed defects were also traced and compared with their reconstructed areas and circumferences.

RESULTS

The three-dimensional images provided coherent images and correct spatial appreciation of the defects (two inlet, two trabecular, one outlet and one membranous Gerbode in vivo; one inlet and one apical in excised hearts). The distances between defects and other structures in the excised hearts agreed well with direct measures (y = 1.05x-0.18, r = 0.98, SEE = 0.30 cm), as did reconstructed areas (y = 1.0x-0.23, r = 0.98, SEE = 0.21 cm2) and circumferences (y = 0.97x + 0.13, r = 0.97, SEE = 0.3 cm).

CONCLUSIONS

Three-dimensional reconstruction of ventricular septal defects can be achieved in the beating heart and provides an accurate appreciation of defect size and location that could be of value in planning interventions.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验