Suppr超能文献

二维稀疏阵聚焦和发散波三维超声实验成像。

Experimental 3-D Ultrasound Imaging with 2-D Sparse Arrays using Focused and Diverging Waves.

机构信息

Department of Information Engineering, University of Florence, Firenze, Italy.

Univ Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206 F-69621, Lyon, France.

出版信息

Sci Rep. 2018 Jun 14;8(1):9108. doi: 10.1038/s41598-018-27490-2.

Abstract

Three dimensional ultrasound (3-D US) imaging methods based on 2-D array probes are increasingly investigated. However, the experimental test of new 3-D US approaches is contrasted by the need of controlling very large numbers of probe elements. Although this problem may be overcome by the use of 2-D sparse arrays, just a few experimental results have so far corroborated the validity of this approach. In this paper, we experimentally compare the performance of a fully wired 1024-element (32 × 32) array, assumed as reference, to that of a 256-element random and of an "optimized" 2-D sparse array, in both focused and compounded diverging wave (DW) transmission modes. The experimental results in 3-D focused mode show that the resolution and contrast produced by the optimized sparse array are close to those of the full array while using 25% of elements. Furthermore, the experimental results in 3-D DW mode and 3-D focused mode are also compared for the first time and they show that both the contrast and the resolution performance are higher when using the 3-D DW at volume rates up to 90/second which represent a 36x speed up factor compared to the focused mode.

摘要

基于二维(2-D)阵列探头的三维(3-D)超声(US)成像方法越来越受到关注。然而,新的 3-D US 方法的实验测试受到需要控制大量探头元件的限制。尽管使用 2-D 稀疏阵列可以克服这个问题,但到目前为止,只有少数实验结果证实了这种方法的有效性。在本文中,我们在聚焦和复合发散波(DW)传输模式下,实验比较了一个全布线的 1024 个元件(32×32)的阵列的性能,该阵列被视为参考,与一个 256 个元件的随机阵列和一个“优化”的 2-D 稀疏阵列的性能进行比较。在 3-D 聚焦模式下的实验结果表明,优化的稀疏阵列产生的分辨率和对比度与全阵列相当,而使用的元件数量仅为 25%。此外,3-D DW 模式和 3-D 聚焦模式的实验结果也首次进行了比较,结果表明,在体积率高达 90/秒的情况下使用 3-D DW 时,对比度和分辨率性能更高,与聚焦模式相比,速度提高了 36 倍。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a18/6002520/7011cbc9cd1f/41598_2018_27490_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验