Suppr超能文献

开始循环:G1 控制出芽酵母中的细胞分裂调节。

Starting to cycle: G1 controls regulating cell division in budding yeast.

作者信息

Sherlock G, Rosamond J

机构信息

Department of Biochemistry and Molecular Biology, University of Manchester, UK.

出版信息

J Gen Microbiol. 1993 Nov;139(11):2531-41. doi: 10.1099/00221287-139-11-2531.

Abstract

In Saccharomyces cerevisiae, START has been shown to comprise a series of tightly regulated reactions by which the cellular environment is assessed and under appropriate conditions, cells are commited to a further round of mitotic division. The key effector of START is the product of the CDC28 gene and the mechanisms by which the protein kinase activity of this gene product is regulated at START are well characterized. This is in contrast to the events which follow p34CDC28 activation and the way in which progress to S phase is achieved, which are less clear. We suggest two possible models to describe the regulation of these events. Firstly, it is conceivable that the only post-START targets of the p34CDC28/G1 cyclin kinase complex are components of the SBF and DSC1 transcription factors. This would require that either SBF or DSC1 regulates CDC4 function either directly by activating the transcription of CDC4 itself or else indirectly by activating the transcription of a mediator of CDC4 function in a manner analogous to the way in which the control of CDC7 function may be mediated by transcriptional regulation of DBF4 (Jackson et al., 1993). Potential regulatory effectors of CDC4 function include SCM4, which suppresses cdc4 mutations in an allele-specific manner (Smith et al., 1992) or its homologue HFS1 (J. Hartley & J. Rosamond, unpublished). This possibility is supported by the finding that CDC4 has no upstream SCB or MCB elements, whereas SCM4 and HFS1 have either an exact or close match to the SCB. This model would further require that genes needed for bud emergence and spindle pole body duplication are also subject to transcriptional regulation by DSC1 or SBF. An alternative model is that the p34CDC28/G1 cyclin complexes have several targets post-START, one being DSC1 and the others being as yet unidentified components of the pathways leading to CDC4 function, spindle pole body duplication and bud emergence. This model could account for the functional redundancy observed amongst the G1 cyclins with the various cyclins providing substrate specificity for the kinase complex. We suggest that a complex containing Cln3 protein is primarily responsible for, and acts most efficiently on, the targets containing Swi6 protein (SBF and DSC1), with complexes containing other G1 cyclins (Cln1 and/or Cln2 proteins) principally involved in activating the other pathways. However, there must be overlap in the function of these complexes with each cyclin able to substitute for some or all of the functions when necessary, albeit with differing efficiencies. This hypothesis is supported by several observations.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

在酿酒酵母中,已表明“起始点”(START)包含一系列严格调控的反应,通过这些反应来评估细胞环境,在适当条件下,细胞进入新一轮有丝分裂。“起始点”的关键效应因子是CDC28基因的产物,该基因产物的蛋白激酶活性在“起始点”处被调控的机制已得到充分表征。这与p34CDC28激活后发生的事件以及进入S期的方式形成对比,后者尚不清楚。我们提出两种可能的模型来描述这些事件的调控。首先,可以想象p34CDC28/G1细胞周期蛋白激酶复合物在“起始点”之后的唯一靶标是SBF和DSC1转录因子的组分。这将要求SBF或DSC1要么直接通过激活CDC4自身的转录来调节CDC4功能,要么通过以类似于DBF4的转录调控介导CDC7功能的方式激活CDC4功能的一个介质的转录来间接调节CDC4功能(Jackson等人,1993年)。CDC4功能的潜在调控效应因子包括SCM4,它以等位基因特异性方式抑制cdc4突变(Smith等人,1992年)或其同源物HFS1(J. Hartley和J. Rosamond,未发表)。这一可能性得到以下发现的支持:CDC4没有上游SCB或MCB元件,而SCM4和HFS1与SCB有精确或紧密匹配。该模型还将要求芽出现和纺锤体极体复制所需的基因也受到DSC1或SBF的转录调控。另一种模型是p34CDC28/G1细胞周期蛋白复合物在“起始点”之后有几个靶标,一个是DSC1,其他是导致CDC4功能、纺锤体极体复制和芽出现的途径中尚未确定的组分。该模型可以解释在G1细胞周期蛋白中观察到的功能冗余,各种细胞周期蛋白为激酶复合物提供底物特异性。我们认为含有Cln3蛋白的复合物主要负责并最有效地作用于含有Swi6蛋白的靶标(SBF和DSC1),而含有其他G1细胞周期蛋白(Cln1和/或Cln2蛋白)的复合物主要参与激活其他途径。然而,这些复合物的功能必然存在重叠,每种细胞周期蛋白在必要时能够替代部分或全部功能,尽管效率不同。这一假设得到了一些观察结果的支持。(摘要截断于400字)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验